Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin.

Laboratory for Cellular and Molecular Neuroscience, Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2008; 105(9):3628-33. DOI: 10.1073/pnas.0708930105
Source: PubMed

ABSTRACT The mechanism of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family has remained poorly understood. Gabapentin (GBP) binds to an exofacial epitope of the alpha(2)delta-1 and alpha(2)delta-2 auxiliary subunits of voltage-gated calcium channels, but acute inhibition of calcium currents by GBP is either very minor or absent. We formulated the hypothesis that GBP impairs the ability of alpha(2)delta subunits to enhance voltage-gated Ca(2+)channel plasma membrane density by means of an effect on trafficking. Our results conclusively demonstrate that GBP inhibits calcium currents, mimicking a lack of alpha(2)delta only when applied chronically, but not acutely, both in heterologous expression systems and in dorsal root-ganglion neurons. GBP acts primarily at an intracellular location, requiring uptake, because the effect of chronically applied GBP is blocked by an inhibitor of the system-L neutral amino acid transporters and enhanced by coexpression of a transporter. However, it is mediated by alpha(2)delta subunits, being prevented by mutations in either alpha(2)delta-1 or alpha(2)delta-2 that abolish GBP binding, and is not observed for alpha(2)delta-3, which does not bind GBP. Furthermore, the trafficking of alpha(2)delta-2 and Ca(V)2 channels is disrupted both by GBP and by the mutation in alpha(2)delta-2, which prevents GBP binding, and we find that GBP reduces cell-surface expression of alpha(2)delta-2 and Ca(V)2.1 subunits. Our evidence indicates that GBP may act chronically by displacing an endogenous ligand that is normally a positive modulator of alpha(2)delta subunit function, thereby impairing the trafficking function of the alpha(2)delta subunits to which it binds.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels.
    Frontiers in physiology. 01/2014; 5:209.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NAADP is a potent Ca(2+) mobilizing messenger in a variety of cells but its molecular mechanism of action is incompletely understood. Accumulating evidence indicates that the poorly characterized two-pore channels (TPCs) in animals are NAADP sensitive Ca(2+)-permeable channels. TPCs localize to the endo-lysosomal system but are functionally coupled to the better characterized endoplasmic reticulum Ca(2+) channels to generate physiologically relevant complex Ca(2+) signals. Whether TPCs directly bind NAADP is not clear. Here we discuss the idea based on recent studies that TPCs are the pore-forming subunits of a protein complex that includes tightly associated, low molecular weight NAADP-binding proteins.
    Messenger (Los Angeles, Calif. : Print). 06/2012; 1(1):63-76.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intractable central post-stroke pain (CPSP) is one of the most common sequelae of stroke, but has been inadequately studied to date. In this study, we first determined the relationship between the lesion site and changes in mechanical or thermal pain sensitivity in a rat CPSP model with experimental thalamic hemorrhage produced by unilateral intra-thalamic collagenase IV (ITC) injection. Then, we evaluated the efficacy of gabapentin (GBP), an anticonvulsant that binds the voltage-gated Ca(2+) channel α2δ and a commonly used anti-neuropathic pain medication. Histological case-by-case analysis showed that only lesions confined to the medial lemniscus and the ventroposterior lateral/medial nuclei of the thalamus and/or the posterior thalamic nucleus resulted in bilateral mechanical pain hypersensitivity. All of the animals displaying CPSP also had impaired motor coordination, while control rats with intra-thalamic saline developed no central pain or motor deficits. GBP had a dose-related anti-allodynic effect after a single administration (1, 10, or 100 mg/kg) on day 7 post-ITC, with significant effects lasting at least 5 h for the higher doses. However, repeated treatment, once a day for two weeks, resulted in complete loss of effectiveness (drug tolerance) at 10 mg/kg, while effectiveness remained at 100 mg/kg, although the time period of efficacious analgesia was reduced. In addition, GBP did not change the basal pain sensitivity and the motor impairment caused by the ITC lesion, suggesting selective action of GBP on the somatosensory system.
    Neuroscience Bulletin 11/2014; · 1.37 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014