Article

Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin.

Laboratory for Cellular and Molecular Neuroscience, Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2008; 105(9):3628-33. DOI: 10.1073/pnas.0708930105
Source: PubMed

ABSTRACT The mechanism of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family has remained poorly understood. Gabapentin (GBP) binds to an exofacial epitope of the alpha(2)delta-1 and alpha(2)delta-2 auxiliary subunits of voltage-gated calcium channels, but acute inhibition of calcium currents by GBP is either very minor or absent. We formulated the hypothesis that GBP impairs the ability of alpha(2)delta subunits to enhance voltage-gated Ca(2+)channel plasma membrane density by means of an effect on trafficking. Our results conclusively demonstrate that GBP inhibits calcium currents, mimicking a lack of alpha(2)delta only when applied chronically, but not acutely, both in heterologous expression systems and in dorsal root-ganglion neurons. GBP acts primarily at an intracellular location, requiring uptake, because the effect of chronically applied GBP is blocked by an inhibitor of the system-L neutral amino acid transporters and enhanced by coexpression of a transporter. However, it is mediated by alpha(2)delta subunits, being prevented by mutations in either alpha(2)delta-1 or alpha(2)delta-2 that abolish GBP binding, and is not observed for alpha(2)delta-3, which does not bind GBP. Furthermore, the trafficking of alpha(2)delta-2 and Ca(V)2 channels is disrupted both by GBP and by the mutation in alpha(2)delta-2, which prevents GBP binding, and we find that GBP reduces cell-surface expression of alpha(2)delta-2 and Ca(V)2.1 subunits. Our evidence indicates that GBP may act chronically by displacing an endogenous ligand that is normally a positive modulator of alpha(2)delta subunit function, thereby impairing the trafficking function of the alpha(2)delta subunits to which it binds.

0 Bookmarks
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The auxiliary α2δ-1 subunit of voltage-gated calcium channels is up-regulated in dorsal root ganglion neurons following peripheral somatosensory nerve damage, in several animal models of neuropathic pain. The α2δ-1 protein has a mainly presynaptic localization, where it is associated with the calcium channels involved in neurotransmitter release. Relevant to the present study, α2δ-1 has been shown to be the therapeutic target of the gabapentinoid drugs in their alleviation of neuropathic pain. These drugs are also used in the treatment of certain epilepsies. In this study we therefore examined whether the level or distribution of α2δ-1 was altered in the hippocampus following experimental induction of epileptic seizures in rats, using both the kainic acid model of human temporal lobe epilepsy, in which status epilepticus is induced, and the tetanus toxin model in which status epilepticus is not involved. The main finding of this study is that we did not identify somatic overexpression of α2δ-1 in hippocampal neurons in either of the epilepsy models, unlike the upregulation of α2δ-1 that occurs following peripheral nerve damage to both somatosensory and motor neurons. However, we did observe local reorganisation of α2δ-1 immunostaining in the hippocampus only in the kainic acid model, where it was associated with areas of neuronal cell loss, as indicated by absence of NeuN immunostaining, dendritic loss, as identified by areas where microtubule-associated protein-2 immunostaining was missing, and reactive gliosis, determined by regions of strong OX42 staining.
    Neuroscience 03/2014; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Chronic pain conditions are serious clinical concerns. Its genesis is closely associated with sensitization of nociceptive primary sensory neurons (nociceptors) and dorsal horn neurons by various pain mediators produced during inflammation and tissue injury. Growing evidence showed that increasing cell surface trafficking of pain-facilitating receptors is an important mechanism underlying the peripheral and central sensitization. Areas covered: We summarized the progress of this area over the past decade by showing that inflammation, tissue damage or pain mediators facilitate cell surface trafficking of pain-facilitating receptors such as transient receptor potential vanilloid-1, transient receptor potential ankyrin-1, voltage-gated sodium channel 1.8, P2X3 and EP4 in primary sensory neurons, GluR1 and GluR2 of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, NR1 and NR2 of N-methyl-d-aspartate receptors and acid-sensing ion channels 1 in dorsal horn neurons and P2X4 in spinal microglia. The anti-allodynic effects of gabapentin was mediated by blocking surface trafficking of α2δ1 and α2δ2 subunits of voltage-gated calcium channels in primary sensory and dorsal horn neurons. Expert opinion: Pain mediators stimulate forward surface trafficking of their own and/or other pain-facilitating receptors to amplify pain intensity and duration. Enhancing surface abundance of pain-facilitating receptors in nociceptors and dorsal horn neurons is an important mechanism underpinning chronic pain states. Targeting specific trafficking events of pain-facilitating receptors may open a novel therapeutic avenue to more efficiently treat chronic pain conditions.
    Expert Opinion on Therapeutic Targets 02/2014; · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate perioperative administration of gabapentin as an adjunct for analgesia in dogs undergoing amputation of a forelimb. Randomized, controlled trial. 30 client-owned dogs. Procedures-On the day before surgery, a baseline pain evaluation was performed in each dog by use of multiple pain assessment methods. Dogs then received gabapentin (10 mg/kg [4.5 mg/lb], PO, once, followed by 5 mg/kg [2.3 mg/lb], PO, q 12 h for 3 additional days) or a placebo. On the day of surgery, dogs were anesthetized and forelimb amputation was performed. Fentanyl was infused after surgery for 18 to 24 hours; use of other analgesics was allowed. In-hospital pain evaluations were repeated at intervals for 18 hours after surgery, and owners were asked to evaluate daily their dog's activity, appetite, and wound soreness for the first 3 days after discharge from the hospital. Results were analyzed by use of a repeated-measures ANOVA. Pain evaluation scores did not differ significantly between gabapentin and placebo groups in the hospital or at home after discharge. As an adjunct to other analgesics and anesthetics, gabapentin, at the dose and frequency used in this study, did not provide a significant benefit for the management of acute perioperative pain in dogs undergoing forelimb amputation. The small sample size and number of other confounding factors, such as aggressive use of other analgesics, limited the likelihood of detecting a benefit of gabapentin. Other gabapentin doses or dosing regimens warrant further study.
    Journal of the American Veterinary Medical Association 04/2010; 236(7):751-6. · 1.72 Impact Factor

Full-text (2 Sources)

View
47 Downloads
Available from
May 21, 2014