Human cardiac-specific cDNA array for idiopathic dilated cardiomyopathy: sex-related differences.

Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, District of Columbia, USA.
Physiological Genomics (Impact Factor: 2.81). 05/2008; 33(2):267-77. DOI: 10.1152/physiolgenomics.00265.2007
Source: PubMed

ABSTRACT Idiopathic dilated cardiomyopathy (IDCM) constitutes a large portion of patients with heart failure of unknown etiology. Up to 50% of all transplant recipients carry this clinical diagnosis. Female-specific gene expression in IDCM has not been explored. We report sex-related differences in the gene expression profile of ventricular myocardium from patients undergoing cardiac transplantation. We produced and sequenced subtractive cDNA libraries, using human left ventricular myocardium obtained from male transplant recipients with IDCM and nonfailing human heart donors. With the resulting sequence data, we generated a custom human heart failure microarray for IDCM containing 1,145 cardiac-specific oligonucleotide probes. This array was used to characterize RNA samples from female IDCM transplant recipients. We identified a female gene expression pattern that consists of 37 upregulated genes and 18 downregulated genes associated with IDCM. Upon functional analysis of the gene expression pattern, deregulated genes unique to female IDCM were those that are involved in energy metabolism and regulation of transcription and translation. For male patients we found deregulation of genes related to muscular contraction. These data suggest that 1) the gene expression pattern we have detected for IDCM may be specific for this disease and 2) there is a sex-specific profile to IDCM. Our observations further suggest for the first time ever novel targets for treatment of IDCM in women and men.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infectious agents including viruses can infect the heart muscle, resulting in the development of heart inflammation called myocarditis. Chronic myocarditis can lead to dilated cardiomyopathy (DCM). DCM develops from the extensive extracellular matrix (ECM) remodeling caused by myocarditis and may result in heart failure. Epidemiological data for viral myocarditis has long suggested a worse pathology in males, with more recent data demonstrating sex-dependent pathogenesis in DCM as well. Matrix metalloproteinases (MMPs), long known modulators of the extracellular matrix, have important roles in mediating heart inflammation and remodeling during disease and in convalescence. This ability of MMPs to control both the inflammatory response and ECM remodeling during myocarditis makes them potential drug targets. In this review, we analyze the role of MMPs in mediating myocarditis/DCM disease progression, their sex-dependent expression, and their potential as drug targets during viral myocarditis and DCM.
    Journal of Cardiovascular Translational Research 03/2014; 7(2). DOI:10.1007/s12265-013-9528-2 · 2.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AimsWomen with aortic stenosis develop a more concentric form of LV hypertrophy than men. However, the molecular factors underlying sex differences in LV remodelling are incompletely understood. We took an unbiased approach to identify sex-specific patterns in gene expression and pathway regulation, and confirmed the most prominent findings in human hearts.Methods and resultsEchocardiography was performed in 104 patients (53.8% women) with aortic stenosis before aortic valve replacement. LV mass, LV end-diastolic diameter, and relative wall thickness were included in a factor analysis to generate an index classifying LV remodelling as adaptive or maladaptive. Maladaptive remodelling was present in 64.6% of male and in 32.7% of female patients (P < 0.01). Genome-wide expression profiling of LV samples was performed in a representative subgroup of 19 patients (52.6% women) compared with samples from healthy controls (n = 18). Transcriptome characterization revealed that fibrosis-related genes/pathways were induced in male overloaded ventricles, while extracellular matrix-related and inflammatory genes/pathways were repressed in female overloaded ventricles (adjusted P < 0.05). We confirmed gene regulation by quantitative real-time reverse transcription–polymerase chain reaction and immunoblotting analysis, and we further demonstrate the relevance of our findings by histological documentation of higher fibrosis in men than in women.Conclusion We conclude that in pressure overload distinct molecular processes are regulated between men and women. Maladaptive LV remodelling occurs more frequently in men and is associated with greater activation of profibrotic and inflammatory markers. Collectively, sex-specific regulation of these processes may contribute to sex differences in the progression to heart failure.
    European Journal of Heart Failure 11/2014; 16(11). DOI:10.1002/ejhf.171 · 6.58 Impact Factor