The j-Subunit of Human Translation Initiation Factor eIF3 Is Required for the Stable Binding of eIF3 and Its Subcomplexes to 40 S Ribosomal Subunits in Vitro

Department of Biological Chemistry, School of Medicine, University of California, Davis, California 95616, USA.
Journal of Biological Chemistry (Impact Factor: 4.57). 04/2004; 279(10):8946-56. DOI: 10.1074/jbc.M312745200
Source: PubMed


Eukaryotic initiation factor 3 (eIF3) is a 12-subunit protein complex that plays a central role in binding of initiator methionyl-tRNA and mRNA to the 40 S ribosomal subunit to form the 40 S initiation complex. The molecular mechanisms by which eIF3 exerts these functions are poorly understood. To learn more about the structure and function of eIF3 we have expressed and purified individual human eIF3 subunits or complexes of eIF3 subunits using baculovirus-infected Sf9 cells. The results indicate that the subunits of human eIF3 that have homologs in Saccharomyces cerevisiae form subcomplexes that reflect the subunit interactions seen in the yeast eIF3 core complex. In addition, we have used an in vitro 40 S ribosomal subunit binding assay to investigate subunit requirements for efficient association of the eIF3 subcomplexes to the 40 S ribosomal subunit. eIF3j alone binds to the 40 S ribosomal subunit, and its presence is required for stable 40 S binding of an eIF3bgi subcomplex. Furthermore, purified eIF3 lacking eIF3j binds 40 S ribosomal subunits weakly, but binds tightly when eIF3j is added. Cleavage of a 16-residue C-terminal peptide from eIF3j by caspase-3 significantly reduces the affinity of eIF3j for the 40 S ribosomal subunit, and the cleaved form provides substantially less stabilization of purified eIF3-40S complexes. These results indicate that eIF3j, and especially its C terminus, play an important role in the recruitment of eIF3 to the 40 S ribosomal subunit.

1 Follower
3 Reads
  • Source
    • "Our observations that eIF3jKD in both HeLa and HEK293 cells produced only a minor drop in the methionine incorporation assay and a modest reduction in the polysome-to-monosome (P/M) ratios and had no significant effect on the integrity of eIF3 as well as of the 43S PICs are not fully consistent with earlier studies, proposing a critical role for eIF3j in anchoring eIF3 to the 40S ribosome with a potential to also significantly influence mRNA recruitment (28–30). Hence, either only a minor proportion of the eIF3j protein from its overall cellular pool is sufficient to carry out these critical initiation functions of eIF3j or its importance deduced mostly from in vitro experiments was somewhat overestimated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The main role of the translation initiation factor 3 (eIF3) is to orchestrate formation of 43S-48S preinitiation complexes (PICs). Until now, most of our knowledge on eIF3 functional contribution to regulation of gene expression comes from yeast studies. Hence, here we developed several novel in vivo assays to monitor the integrity of the 13-subunit human eIF3 complex, defects in assembly of 43S PICs, efficiency of mRNA recruitment, and postassembly events such as AUG recognition. We knocked down expression of the PCI domain-containing eIF3c and eIF3a subunits and of eIF3j in human HeLa and HEK293 cells and analyzed the functional consequences. Whereas eIF3j downregulation had barely any effect and eIF3a knockdown disintegrated the entire eIF3 complex, eIF3c knockdown produced a separate assembly of the a, b, g, and i subunits (closely resembling the yeast evolutionary conserved eIF3 core), which preserved relatively high 40S binding affinity and an ability to promote mRNA recruitment to 40S subunits and displayed defects in AUG recognition. Both eIF3c and eIF3a knockdowns also severely reduced protein but not mRNA levels of many other eIF3 subunits and indeed shut off translation. We propose that eIF3a and eIF3c control abundance and assembly of the entire eIF3 and thus represent its crucial scaffolding elements critically required for formation of PICs.
    Molecular and Cellular Biology 06/2014; 34(16). DOI:10.1128/MCB.00663-14 · 4.78 Impact Factor
  • Source
    • "The interactions of subunit j with the octameric core may also play important roles in stabilizing eIF3 binding to the 40S subunit (Fraser et al., 2004; Unbehaun et al., 2004). Notably, the interactions of subunit j with the core are much tighter than its interactions with subunit b (Figure 5D) (ElAntak et al., 2007; Sun et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic translation initiation factor 3 (eIF3) plays a central role in protein synthesis by organizing the formation of the 43S preinitiation complex. Using genetic tag visualization by electron microscopy, we reveal the molecular organization of ten human eIF3 subunits, including an octameric core. The structure of eIF3 bears a close resemblance to that of the proteasome lid, with a conserved spatial organization of eight core subunits containing PCI and MPN domains that coordinate functional interactions in both complexes. We further show that eIF3 subunits a and c interact with initiation factors eIF1 and eIF1A, which control the stringency of start codon selection. Finally, we find that subunit j, which modulates messenger RNA interactions with the small ribosomal subunit, makes multiple independent interactions with the eIF3 octameric core. These results highlight the conserved architecture of eIF3 and how it scaffolds key factors that control translation initiation in higher eukaryotes, including humans.
    Structure 04/2013; 21(6). DOI:10.1016/j.str.2013.04.002 · 5.62 Impact Factor
  • Source
    • "Proteolytic cleavage of eIF4G1 and eIF4B by caspase-3 during apoptosis induction was observed earlier [20,21]. Although caspase-dependent cleavage of eIF3A has not been described yet, another component of the initiation factor eIF3, eIF3j, is a known caspase-3 substrate [22,23]. Evidently, caspase-3-mediated cleavage of translation initiation factors is a general mechanism during apoptosis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.
    Radiation Oncology 02/2013; 8(1):35. DOI:10.1186/1748-717X-8-35 · 2.55 Impact Factor
Show more

Similar Publications


3 Reads
Available from