Article

Temporal variability in the responses of individual canine airways to methacholine.

Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA.
Journal of Applied Physiology (Impact Factor: 3.48). 06/2008; 104(5):1381-6. DOI: 10.1152/japplphysiol.01348.2007
Source: PubMed

ABSTRACT Previous work showed that individual airway size, before any spasmogen, varied widely in the same animals on different days. The effect of this variable baseline size on the airway response to a subsequent challenge is unknown. The present study examined how the variability in individual airway baseline size in dogs was related to that after methacholine challenge on 4 different days using high-resolution computed tomography scans. Dogs were anesthetized and ventilated, and on 4 separate days randomly varying between 1 and 8 wk apart, baseline scans were acquired, followed by a continuous intravenous infusion of methacholine at three rates in increasing order (17, 67, and 200 microg/min). As the measure of variability, we used the coefficient of variation (CV) of the four airway luminal measurements of each airway at baseline and at each dose of methacholine. For most airways, there was wide variability both between and within dogs in the response to a given dose of methacholine (CV = 33-38%). Airways with any level of methacholine stimulation had greater variability than those at baseline. The airway variability was greatest at the lowest dose of methacholine administered but was elevated at all the doses. In conclusion, there was substantial day-to-day variability in baseline airway size. Most importantly, the same dose of methacholine to the same individual airway showed even greater variability than that at baseline. If we consider that increased heterogeneity may potentiate clinical symptoms, then airway response variability may play an important role in the manifestation of airway disease.

0 Bookmarks
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chest wall strapping has been recently shown to be associated with an increase in airway responsiveness to methacholine. To investigate whether this is the result of the decreased lung volume or an increased heterogeneity due to chest wall distortion, ten healthy volunteers underwent a methacholine challenge at control conditions and after selective strapping of the rib cage, the abdomen or the whole chest wall resulting in similar decrements of functional residual capacity and total lung capacity but causing different distribution of the bronchoconstrictor. Methacholine during strapping reduced forced expiratory flow, dynamic compliance, and reactance at 5Hz and increased pulmonary resistance and respiratory resistance at 5Hz that were significantly greater than at control and associated with a blunted bronchodilator effect of the deep breath. However, no significant differences were observed between selective and total chest wall strapping, suggesting that the major mechanism for increasing airway responsiveness with chest wall strapping is the breathing at low lung volume rather than regional heterogeneities.
    Respiratory Physiology & Neurobiology 04/2009; 166(1):47-53. · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.
    Pulmonary Pharmacology &amp Therapeutics 06/2009; 22(5):407-16. · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances have revealed that during exogenous airway challenge, airway diameters cannot be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. To better understand these phenomena, we developed a multiscale model that allowed us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle contraction on individual airway segments, which, together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition are coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing the agonist to less constricted regions. This results in a negative feedback that may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insights into several phenomena including the intra- and interbreath dynamics of airway constriction throughout the tree structure.
    Journal of Applied Physiology 08/2010; 109(2):553-63. · 3.48 Impact Factor

Full-text (2 Sources)

View
39 Downloads
Available from
May 29, 2014