The Flavouring Phytochemical 2-Pentanone Reduces Prostaglandin Production and COX-2 Expression in Colon Cancer Cells

Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
Biological & Pharmaceutical Bulletin (Impact Factor: 1.83). 04/2008; 31(3):534-7. DOI: 10.1248/bpb.31.534
Source: PubMed


Many phytochemicals found in the diet may prevent colon carcinogenesis by affecting biochemical processes in the colonic mucosa. Inflammation and subsequent elevation of the enzyme cyclooxygenase-2 (COX-2) are two such factors involved in the development of colon cancer, and inhibition of these processes could be important targets for chemoprevention. We have previously shown COX-2 inhibitory activity locally in the colon; e.g. in human fecal water from a group of vegetarians. In this study we focus on 2-pentanone, a frequently occurring compound in common foods such as banana and carrot. The aim was to study the inhibitory effects on prostaglandin production and COX-2 protein expression in tumour necrosis factor-alpha stimulated colon cancer cells (HT29) by radioimmunoassay and Western blotting. 2-Pentanone inhibited both prostaglandin production and COX-2 protein expression in human colon cancer cells. A concentration of 400 mumol/l 2-pentanone inhibited the prostaglandin production by 56.9+/-12.9% which is in the same range as the reference compound NS398 (59.8+/-7.6%). The two highest concentrations of 2-pentanone were further analyzed by Western blot, and 400 micromol/l and 200 micromol/l 2-pentanone resulted in a 53.3+/-9.6% and +/-27.1% reduction of the COX-2 protein levels respectively. Further studies on flavouring compounds, for example 2-pentanone, as colon cancer chemopreventives would be very valuable, and such results may contribute to future dietary recommendations.

1 Follower
8 Reads
  • Source
    • "In fact, 2-pentanone, which is a naturally occurring compound in fruits, vegetables and fermented foods, has anti-inflammatory and chemopreventive properties. According to Pettersson et al. [48], it inhibits the prostaglandin production and COX-2 protein expression in human colon cancer cells. The increase of 2,3-butanedione is interesting since it may have health benefits by impacting on the growth of some bacteria, such as L. delbrueckii subsp. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The human gut harbors a diverse community of microorganisms which serve numerous important functions for the host wellbeing. Functional foods are commonly used to modulate the composition of the gut microbiota contributing to the maintenance of the host health or prevention of disease. In the present study, we characterized the impact of one month intake of a synbiotic food, containing fructooligosaccharides and the probiotic strains Lactobacillus helveticus Bar13 and Bifidobacterium longum Bar33, on the gut microbiota composition and metabolic profiles of 20 healthy subjects. The synbiotic food did not modify the overall structure of the gut microbiome, as indicated by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The ability of the probiotic L. helveticus and B. longum strains to pass through the gastrointestinal tract was hypothesized on the basis of real-time PCR data. In spite of a stable microbiota, the intake of the synbiotic food resulted in a shift of the fecal metabolic profiles, highlighted by the Gas Chromatography Mass Spectrometry Solid Phase Micro-Extraction (GC-MS/SPME) analysis. The extent of short chain fatty acids (SCFA), ketones, carbon disulfide and methyl acetate was significantly affected by the synbiotic food consumption. Furthermore, the Canonical discriminant Analysis of Principal coordinates (CAP) of GC-MS/SPME profiles allowed a separation of the stool samples recovered before and after the consumption of the functional food. In this study we investigated the global impact of a dietary intervention on the gut ecology and metabolism in healthy humans. We demonstrated that the intake of a synbiotic food leads to a modulation of the gut metabolic activities with a maintenance of the gut biostructure. In particular, the significant increase of SCFA, ketones, carbon disulfide and methyl acetate following the feeding period suggests potential health promoting effects of the synbiotic food.
    BMC Microbiology 01/2010; 10(1):4. DOI:10.1186/1471-2180-10-4 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure-activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science.
    Phytochemistry Reviews 06/2010; 9(2):279-301. DOI:10.1007/s11101-009-9160-6 · 2.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cyclooxygenase enzymes (COX-1 and COX-2) catalyse the production of prostaglandins from arachidonic acid. Prostaglandins are important mediators in the inflammatory process and their production can be reduced by COX-inhibitors. Endocannabinoids, endogenous analogues of the plant derived cannabinoids, occur normally in the human body. The Endocannabinoids are structurally similar to arachidonic acid and have been suggested to interfere with the inflammatory process. They have also been shown to inhibit cancer cell proliferation. Anti-inflammatory effects of cannabinoids and endocannabinoids have been observed, however the mode of action is not yet clarified. Anti-inflammatory activity (i.e., inhibition of COX-2) is proposed to play an important role in the development of colon cancer, which makes this subject interesting to study further. In the present work, the six cannabinoids tetrahydrocannabinol (Δ⁹-THC), tetrahydrocannabinolic acid (Δ⁹-THC-A), cannabidiol (CBD), cannabidiolic acid (CBDA), cannabigerol (CBG) and cannabigerolic acid (CBGA), isolated from Cannabis sativa, were evaluated for their effects on prostaglandin production. For this purpose an in vitro enzyme based COX-1/COX-2 inhibition assay and a cell based prostaglandin production radioimmunoassay were used. Cannabinoids inhibited cyclooxygenase enzyme activity with IC₅₀ values ranging from 1.7·10⁻³ to 2.0·10⁻⁴ M.
    Biological & Pharmaceutical Bulletin 05/2011; 34(5):774-8. DOI:10.1248/bpb.34.774 · 1.83 Impact Factor
Show more