Article

The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles.

Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA.
Free Radical Biology and Medicine (Impact Factor: 5.27). 06/2008; 44(9):1689-99. DOI: 10.1016/j.freeradbiomed.2008.01.028
Source: PubMed

ABSTRACT Ambient particulate matter (PM) is an environmental factor that has been associated with increased respiratory morbidity and mortality. The major effect of ambient PM on the pulmonary system is the exacerbation of inflammation, especially in susceptible people. One of the mechanisms by which ambient PM exerts its proinflammatory effects is the generation of oxidative stress by its chemical compounds and metals. Cellular responses to PM-induced oxidative stress include activation of antioxidant defense, inflammation, and toxicity. The proinflammatory effect of PM in the lung is characterized by increased cytokine/chemokine production and adhesion molecule expression. Moreover, there is evidence that ambient PM can act as an adjuvant for allergic sensitization, which raises the possibility that long-term PM exposure may lead to increased prevalence of asthma. In addition to ambient PM, rapid expansion of nanotechnology has introduced the potential that engineered nanoparticles (NP) may also become airborne and may contribute to pulmonary diseases by novel mechanisms that could include oxidant injury. Currently, little is known about the potential adverse health effects of these particles. In this communication, the mechanisms by which particulate pollutants, including ambient PM and engineered NP, exert their adverse effects through the generation of oxidative stress and the impacts of oxidant injury in the respiratory tract will be reviewed. The importance of cellular antioxidant and detoxification pathways in protecting against particle-induced lung damage will also be discussed.

0 Bookmarks
 · 
50 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the fact that precursors to reactive oxygen species (ROS) are prevalent indoors, the concentration of ROS inside buildings is unknown. ROS on PM2.5 was measured inside and outside twelve residential buildings and eleven institutional and retail buildings. The mean (±s.d.) concentration of ROS on PM2.5 inside homes (1.37±1.2nmoles/m(3)) was not significantly different from the outdoor concentration (1.41±1.0nmoles/m(3)). Similarly, the indoor and outdoor concentrations of ROS on PM2.5 at institutional buildings (1.16±0.38nmoles/m(3) indoors and 1.68±1.3nmoles/m(3) outdoors) and retail stores (1.09±0.93nmoles/m(3) indoors and 1.12±1.1nmoles/m(3) outdoors) were not significantly different and were comparable to those in residential buildings. The indoor concentration of particulate ROS cannot be predicted based on the measurement of other common indoor pollutants, indicating that it is important to separately assess the concentration of particulate ROS in air quality studies. Daytime indoor occupational and residential exposure to particulate ROS dominates daytime outdoor exposure to particulate ROS. These findings highlight the need for further study of ROS in indoor microenvironments.
    Environmental Research 04/2014; 132C:46-53. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Graphene nanoparticle dispersions show immense potential as multifunctional agents for in vivo biomedical applications. Herein, we follow regulatory guidelines for pharmaceuticals that recommend safety pharmacology assessment at least 10 – 100 times higher than the projected therapeutic dose, and present comprehensive single dose response, expanded acute toxicology, toxicokinetics, and respiratory/cardiovascular safety pharmacology results for intravenously administered dextran-coated graphene oxide nanoplatelet (GNP-Dex) formulations to rats at doses between 1 and 500 mg/kg. Our results indicate that the maximum tolerable dose (MTD) of GNP-Dex is between 50 mg/kg ≤ MTD < 125 mg/kg, blood half-life < 30 min, and majority of nanoparticles excreted within 24 h through feces. Histopathology changes were noted at ≥250 mg/kg in the heart, liver, lung, spleen, and kidney; we found no changes in the brain and no GNP-Dex related effects in the cardiovascular parameters or hematological factors (blood, lipid, and metabolic panels) at doses < 125 mg/kg. The results open avenues for pivotal preclinical single and repeat dose safety studies following good laboratory practices (GLP) as required by regulatory agencies for investigational new drug (IND) application.
    Biomaterials 05/2014; · 7.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traffic and power generation are the main sources of urban air pollution. The idea that outdoor air pollution can cause exacerbations of pre-existing asthma is supported by an evidence base that has been accumulating for several decades, with several studies suggesting a contribution to new-onset asthma as well. In this Series paper, we discuss the effects of particulate matter (PM), gaseous pollutants (ozone, nitrogen dioxide, and sulphur dioxide), and mixed traffic-related air pollution. We focus on clinical studies, both epidemiological and experimental, published in the previous 5 years. From a mechanistic perspective, air pollutants probably cause oxidative injury to the airways, leading to inflammation, remodelling, and increased risk of sensitisation. Although several pollutants have been linked to new-onset asthma, the strength of the evidence is variable. We also discuss clinical implications, policy issues, and research gaps relevant to air pollution and asthma.
    The Lancet 05/2014; 383(9928):1581-92. · 39.06 Impact Factor

Full-text

View
1 Download
Available from