Article

Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock.

Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215 UCB, Boulder, CO 80309-0215, USA.
Molecular cell (Impact Factor: 14.46). 03/2008; 29(4):499-509. DOI: 10.1016/j.molcel.2007.12.013
Source: PubMed

ABSTRACT Noncoding RNAs (ncRNAs) have recently been discovered to regulate mRNA transcription in trans, a role traditionally reserved for proteins. The breadth of ncRNAs as transacting transcriptional regulators and the diversity of signals to which they respond are only now becoming recognized. Here we show that human Alu RNA, transcribed from short interspersed elements (SINEs), is a transacting transcriptional repressor during the cellular heat shock response. Alu RNA blocks transcription by binding RNA polymerase II (Pol II) and entering complexes at promoters in vitro and in human cells. Transcriptional repression by Alu RNA involves two loosely structured domains that are modular, a property reminiscent of classical protein transcriptional regulators. Two other SINE RNAs, human scAlu RNA and mouse B1 RNA, also bind Pol II but do not repress transcription in vitro. These studies provide an explanation for why mouse cells harbor two major classes of SINEs, whereas human cells contain only one.

1 Bookmark
 · 
130 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ageing is manifested as functional and structural deterioration that affects cell and tissue physiology. mRNA translation is a central cellular process, supplying cells with newly synthesized proteins. Accumulating evidence suggests that alterations in protein synthesis are not merely a corollary but rather a critical factor for the progression of ageing. Here we survey protein synthesis regulatory mechanisms and focus on the pre-translational regulation of the process exerted by non-coding RNA species, RNA binding proteins and alterations of intrinsic RNA properties. In addition, we discuss the tight relationship between mRNA translation and two central pathways that modulate ageing, namely the Insulin/IGF-1 and TOR signalling cascades. A thorough understanding of the complex interplay between protein synthesis regulation and ageing will provide critical insights into the pathogenesis of age-related disorders, associated with impaired proteostasis and protein quality control. Copyright © 2014. Published by Elsevier B.V.
    Ageing Research Reviews 12/2014; · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Age-related macular degeneration (AMD) is the leading cause of legal blindness in the elderly in industrialized countries. AMD is a multifactorial disease influenced by both genetic and environmental risk factors. Progression of AMD is characterized by an increase in the number and size of drusen, extracellular deposits, which accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane (BM) in outer retina. The major pathways associated with its pathogenesis include oxidative stress and inflammation in the early stages of AMD. Little is known about the interactions among these mechanisms that drive the transition from early to late stages of AMD, such as geographic atrophy (GA) or choroidal neovascularization (CNV). As part of the innate immune system, inflammasome activation has been identified in RPE cells and proposed to be a causal factor for RPE dysfunction and degeneration. Here, we will first review the classic model of inflammasome activation, then discuss the potentials of AMD-related factors to activate the inflammasome in both nonocular immune cells and RPE cells, and finally introduce several novel mechanisms for regulating the inflammasome activity.
    Mediators of Inflammation 01/2015; 2015(Article ID 690243):11 pages. · 2.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer is one of the leading causes of mortality among US males. There is an urgent unmet need to develop sensitive and specific biomarkers for the early detection of prostate cancer to reduce overtreatment and accompanying morbidity. We identified a group of differentially expressed long noncoding RNAs in prostate cancer cell lines and patient samples and further characterized six long noncoding RNAs (AK024556, XLOC_007697, LOC100287482, XLOC_005327, XLOC_008559, and XLOC_009911) in prostatic adenocarcinoma tissue samples (Gleason score >6.0) and compared them with matched normal (healthy) tissues. Interestingly, these markers were also successfully detected in patient urine samples and were found to be up-regulated when compared with normal (healthy) urine. AK024556 (SPRY4-IT1) was highly up-regulated in human prostate cancer cell line PC3 but not in LNCaP, and siRNA knockdown of SPRY4-IT1 in PC3 cells inhibited cell proliferation and invasion and increased cell apoptosis. Chromogenic in situ hybridization assay was developed to detect long noncoding RNAs in primary prostatic adenocarcinoma tissue samples, paving the way for clinical diagnostics. We believe that these results will set the stage for more extensive studies to develop novel long noncoding RNA-based diagnostic assays for early prostate cancer detection and will help to distinguish benign prostate cancer from precancerous lesions.
    The Journal of molecular diagnostics: JMD 10/2014; · 3.48 Impact Factor

Preview

Download
3 Downloads
Available from