Human RFT1 Deficiency Leads to a Disorder of N-Linked Glycosylation

Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
The American Journal of Human Genetics (Impact Factor: 10.93). 03/2008; 82(3):600-6. DOI: 10.1016/j.ajhg.2007.12.021
Source: PubMed


N-linked glycosylation is an essential posttranslational modification of proteins in eukaryotes. The substrate of N-linked glycosylation, dolichol pyrophosphate (DolPP)-GlcNAc(2)Man(9)Glc(3), is assembled through a complex series of ordered reactions requiring the translocation of the intermediate DolPP-GlcNAc(2)Man(5) structure across the endoplasmic-reticulum membrane. A young patient diagnosed with a congenital disorder of glycosylation characterized by an intracellular accumulation of DolPP-GlcNAc(2)Man(5) was found to carry a homozygous point mutation in the RFT1 gene. The c.199C-->T mutation introduced the amino acid substitution p.R67C. The human RFT1 protein shares 22% identity with its yeast ortholog, which is involved in the translocation of DolPP-GlcNAc(2)Man(5) from the cytosolic into the lumenal side of the endoplasmic reticulum. Despite the low sequence similarity between the yeast and the human RFT1 proteins, we demonstrated both their functional orthology and the pathologic effect of the human p.R67C mutation by complementation assay in Deltarft1 yeast cells. The causality of the RFT1 p.R67C mutation was further established by restoration of normal glycosylation profiles in patient-derived fibroblasts after lentiviral expression of a normal RFT1 cDNA. The definition of the RFT1 defect establishes the functional conservation of the DolPP-GlcNAc(2)Man(5) translocation process in eukaryotes. RFT1 deficiency in both yeast and human cells leads to the accumulation of incomplete DolPP-GlcNAc(2)Man(5) and to a profound glycosylation disorder in humans.

Download full-text


Available from: Bryan Winchester,
  • Source
    • "Sensorineural deafness was a prominent feature in four of the seven ALG11-CDG patients. Sensorineural deafness is highly unusual in other types of CDG, except RFT1-CDG [4] [5]. Interestingly, RFT1 is responsible for the translocation of the DLO "
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on two novel patients with ALG11-CDG. The phenotype was characterized by severe psychomotor disability, progressive microcephaly, sensorineural hearing loss, therapy-resistant epilepsy with burst suppression EEG, cerebral atrophy with, in one of them, neuronal heterotopia, and early lethality. Analysis of ALG11 revealed compound heterozygosity involving three novel mutations: the splice site mutation c.45-2A > T, the c.36dupG duplication, and the missense mutation c.479G > T (p.G160V) that was present in both.
    Molecular Genetics and Metabolism Reports 11/2014; 2. DOI:10.1016/j.ymgmr.2014.11.006
  • Source
    • "Human TMEM27 cDNA sequence was subcloned as a PCR fragment flanked by SmaI and XhoI restriction sites into the Eco47III and XhoI sites of pLenti6-EGFP (Life Technologies), thus yielding to pLenti6-TMEM27 vector. Lentiviral production was performed according to the protocol described elsewhere [29]. Infected MDCK cells were selected with 6 µg/mL blasticidin S (Life Technologies). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway.
    PLoS ONE 05/2014; 9(5):e96823. DOI:10.1371/journal.pone.0096823 · 3.23 Impact Factor
  • Source
    • "The human RFT1 protein with its 541 amino acids spans the ER membrane 11 times according to prediction algorithms ( Fig . 15 ) . The asparagine at position p . N227 might be N - glycosylated . All five identified point mutations convert strongly conserved amino acids ( Supp . Table S15 ) [ Haeuptle et al . , 2008 ; Vleugels et al . , in press ] ."
    [Show abstract] [Hide abstract]
    ABSTRACT: Defects in the biosynthesis of the oligosaccharide precursor for N-glycosylation lead to decreased occupancy of glycosylation sites and thereby to diseases known as congenital disorders of glycosylation (CDG). In the last 20 years, approximately 1,000 CDG patients have been identified presenting with multiple organ dysfunctions. This review sets the state of the art by listing all mutations identified in the 15 genes (PMM2, MPI, DPAGT1, ALG1, ALG2, ALG3, ALG9, ALG12, ALG6, ALG8, DOLK, DPM1, DPM3, MPDU1, and RFT1) that yield a deficiency of dolichol-linked oligosaccharide biosynthesis. The present analysis shows that most mutations lead to substitutions of strongly conserved amino acid residues across eukaryotes. Furthermore, the comparison between the different forms of CDG affecting dolichol-linked oligosaccharide biosynthesis shows that the severity of the disease does not relate to the position of the mutated gene along this biosynthetic pathway.
    Human Mutation 12/2009; 30(12):1628-41. DOI:10.1002/humu.21126 · 5.14 Impact Factor
Show more