Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica

Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
BMC Genomics (Impact Factor: 4.04). 02/2008; 9:111. DOI: 10.1186/1471-2164-9-111
Source: PubMed

ABSTRACT All jawed-vertebrates have four T cell receptor (TCR) chains: alpha (TRA), beta (TRB), gamma (TRG) and delta (TRD). Marsupials appear unique by having an additional TCR: mu (TRM). The evolutionary origin of TRM and its relationship to other TCR remain obscure, and is confounded by previous results that support TRM being a hybrid between a TCR and immunoglobulin locus. The availability of the first marsupial genome sequence allows investigation of these evolutionary relationships.
The organization of the conventional TCR loci, encoding the TRA, TRB, TRG and TRD chains, in the opossum Monodelphis domestica are highly conserved with and of similar complexity to that of eutherians (placental mammals). There is a high degree of conserved synteny in the genomic regions encoding the conventional TCR across mammals and birds. In contrast the chromosomal region containing TRM is not well conserved across mammals. None of the conventional TCR loci contain variable region gene segments with homology to those found in TRM; rather TRM variable genes are most similar to that of immunoglobulin heavy chain genes.
Complete genomic analyses of the opossum TCR loci continue to support an origin of TRM as a hybrid between a TCR and immunoglobulin locus. None of the conventional TCR loci contain evidence that such a recombination event occurred, rather they demonstrate a high degree of stability across distantly related mammals. TRM, therefore, appears to be derived from receptor genes no longer extant in placental mammals. These analyses provide the first genomic scale structural detail of marsupial TCR genes, a lineage of mammals used as models of early development and human disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marsupials (metatherians), with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil), with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.
    11/2012; 2012:543176. DOI:10.6064/2012/543176
  • [Show abstract] [Hide abstract]
    ABSTRACT: γδ T cells, αβ T cells, and B cells are present together in all but the most primitive vertebrates, suggesting that each population contributes to host immune competence uniquely and that all three are necessary for maintaining immune competence. Functional and molecular analyses indicate that in infections, γδ T cells respond earlier than αβ T cells do and that they emerge late after pathogen numbers start to decline. Thus, these cells may be involved in both establishing and regulating the inflammatory response. Moreover, γδ T cells and αβ T cells are clearly distinct in their antigen recognition and activation requirements as well as in the development of their antigen-specific repertoire and effector function. These aspects allow γδ T cells to occupy unique temporal and functional niches in host immune defense. We review these and other advances in γδ T cell biology in the context of their being the major initial IL-17 producers in acute infection. Expected final online publication date for the Annual Review of Immunology Volume 32 is March 21, 2014. Please see for revised estimates.
    Annual Review of Immunology 01/2014; DOI:10.1146/annurev-immunol-032713-120216 · 41.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Sharks have successfully lived in marine ecosystems, often atop food chains as apex predators, for nearly one and a half billion years. Throughout this period they have benefitted from an immune system with the same fundamental components found in terrestrial vertebrates like man. Additionally, sharks have some rather extraordinary immune mechanisms which mammals lack. Areas covered: In this review the author briefly orients the reader to sharks, their adaptive immunity, and their important phylogenetic position in comparative immunology. The author also differentiates some of the myths from facts concerning these animals, their cartilage, and cancer. From thereon, the author explores some of the more remarkable capabilities and products of shark lymphocytes. Sharks have an isotype of light chain-less antibodies that are useful tools in molecular biology and are moving towards translational use in the clinic. These special antibodies are just one of the several tricks of shark lymphocyte antigen receptor systems. Expert opinion: While shark cartilage has not helped oncology patients, shark immunoglobulins and T cell receptors do offer exciting novel possibilities for immunotherapeutics. Much of the clinical immunology developmental pipeline has turned from traditional vaccines to passively delivered monoclonal antibody-based drugs for targeted depletion, activation, blocking and immunomodulation. The immunogenetic tools of shark lymphocytes, battle-tested since the dawn of our adaptive immune system, are well poised to expand the design landscape for the next generation of immunotherapy products.
    Expert Opinion on Drug Discovery 05/2014; DOI:10.1517/17460441.2014.920818 · 3.47 Impact Factor

Preview (3 Sources)

Available from