Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB.

Institute for Molecular Biosciences, Co-operative Research Centre for Chronic Inflammatory Diseases, The University of Queensland, St. Lucia, QLD 4072, Australia.
Gene (Impact Factor: 2.08). 05/2008; 413(1-2):32-41. DOI: 10.1016/j.gene.2008.01.014
Source: PubMed

ABSTRACT Microphthalmia transcription factor (MITF) regulates bone homeostasis by inducing expression of critical genes associated with osteoclast function. Gpnmb is a macrophage-enriched gene that has also been shown to be expressed in osteoblasts. Here, we have shown gpnmb to be highly induced in maturing murine osteoclasts. Microarray expression profile analysis identified gpnmb as a potential target of MITF in RAW264.7 cells, subclone C4 (RAW/C4), that overexpress this transcription factor. Electrophoretic mobility shift assays identified a MITF-binding site (M-box) in the gpnmb promoter that is conserved in different mammalian species. Anti-MITF antibody supershifted the DNA-MITF complex for the promoter site while MITF binding was abolished by mutation of this site. The gpnmb promoter was transactivated by co-expression of MITF in reporter gene assays while mutation of the gpnmb M-box prevented MITF transactivation. The induction of gpnmb expression during osteoclastogenesis was shown to exhibit similar kinetics to the known MITF targets, acp5 and clcn7. GPNMB expressed in RAW/C4 cells exhibited distinct subcellular distribution at different stages of osteoclast differentiation. At days 5 and 7, GPNMB protein co-localised with the osteoclast/macrophage lysosomal/endocytic marker MAC-3/LAMP-2, suggesting that GPNMB resides in the endocytic pathway of mature macrophages and is possibly targeted to the plasma membrane of bone-resorbing osteoclasts. The inclusion of gpnmb in the MITF regulon suggests a role for GPNMB in mature osteoclast function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the effect of trichostatin A (TSA) on the gastric cancer cell line BGC-823. The effect of TSA on growth inhibition and apoptosis of BGC-823 cells was examined. The gene expression profile was determined by microarray. Western blotting was used to study the levels of acetylated histone H4 and Glycoprotein non-metastatic melanoma protein B (GPNMB) proteins. GPNMB gene expression was measured by real-time PCR. GPNMB protein levels in gastric adenocarcinoma tissues and adjoining normal tissues were detected by immunohistochemistry. The results showed that a significant decrease in cell population following treatment with 75 ng/mL TSA for 48 h (0.87 ± 0.04) as compared to control (1.14 ± 0.06) (P = 0.02). Apoptotic cells were increased in TSA (75 ng/mL for 48 h) treated group as compared to the control group (from 2.02% to 19.74%) by flow cytometry. The expression of acetylated histone H4 was increased in TSA treated (75 ng/mL for 48 h) group (from 1.00 ± 0.26 to 1.87 ± 0.33, F = 5.862, P = 0.0038) as compared to the control group by Western blotting. After 48 h TSA treatment (75 ng/mL), BGC-823 cells showed decrease in GPNMB gene expression (from 1.00 ± 0.21 to 0.59 ± 0.11, F = 6.214, P = 0.0018). Immunohistochemistry showed that GPNMB expression in gastric adenocarcinoma was significantly higher than the adjoining normal tissues (P = 0.000). To conclusion, our results support that TSA can induce apoptosis, and increase acetylated histone H4 in BGC-823 cells. GPNMB expression is decreased in BGC-823 cells after TSA treatment. GPNMB is overexpressed in gastric adenocarcinoma tissue. GPNMB involved in TSA-induced apoptosis might participate in gastric cancer.
    International Journal of Clinical and Experimental Medicine 01/2014; 7(12):4857-66. · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic inflammation in aging is characterized by increased inflammatory cytokines, bone loss, decreased adaptation, and defective tissue repair in response to injury. Aging leads to inherent changes in mesenchymal stem cell (MSC) differentiation, resulting in impaired osteoblastogenesis. Also, the pro-inflammatory cytokines increase with aging, leading to enhanced myelopoiesis and osteoclastogenesis. Bone marrow macrophages (BMMs) play pivotal roles in osteoblast differentiation, the maintenance of hematopoietic stem cells (HSCs), and subsequent bone repair. However, during aging, little is known about the role of macrophages in the differentiation and function of MSC and HSC. Aged mammals have higher circulating pro-inflammatory cytokines than young adults, supporting the hypothesis of increased inflammation with aging. This review will aid on the understanding of the potential role of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in differentiation and function of osteoblasts and osteoclasts. Copyright © 2014. Published by Elsevier Inc.
    Life Sciences 12/2014; DOI:10.1016/j.lfs.2014.11.011 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Teneurins are large type II transmembrane proteins that are necessary for the normal development of the central nervous system (CNS). While many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus where it can influence gene transcription. Since teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast 2-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time Q-PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 02/2015; DOI:10.1074/jbc.M114.615922 · 4.60 Impact Factor


Available from
Jan 6, 2015