Article

Colonization of second-trimester placenta parenchyma

Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
American journal of obstetrics and gynecology (Impact Factor: 3.97). 08/2008; 199(1):52.e1-52.e10. DOI: 10.1016/j.ajog.2007.11.068
Source: PubMed

ABSTRACT The overtly healthy, nonpregnant uterus harbors bacteria, Mycoplasma and Ureaplasma. The extent of colonization remains elusive, as are relationships between isolated microorganisms, preterm labor and fetal inflammation.
Biopsy specimens of chorion parenchyma from 1083 placentas delivered before the beginning of the 28th week of gestation were cultured, and the placentas were examined histologically. The frequencies of individual microorganisms and groups of microorganisms were evaluated in strata of processes leading to preterm delivery, routes of delivery, gestational age, and placenta morphology.
Placentas delivered by cesarean section with preeclampsia had the lowest bacterial recovery rate (25%). Preterm labor had the highest rates, which decreased with increasing gestational age from 79% at 23 weeks to 43% at 27 weeks. The presence of microorganisms in placenta parenchyma was associated with the presence of neutrophils in the fetal stem vessels of the chorion or in the vessels of the umbilical cord.
The high rate of colonization appears to coincide with phenomena associated with preterm delivery and gestational age. The presence of microorganisms within placenta parenchyma is biologically important.

1 Follower
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pre-term birth (PTB) associated with intrauterine infection and inflammation (IUI) is the major cause of early PTB less than 32 weeks of gestation. Ureaplasma spp. are common commensals of the urogenital tract in pregnancy and are the most commonly identified microorganisms in amniotic fluid of pre-term pregnancies. While we have an understanding of the causal relationship between intra-amniotic infection, inflammation and PTB, we are still unable to explain why vaginal Ureaplasma sp. colonization is tolerated in some women but causes PTB in others. It is now known that placental tissues are frequently colonized by bacteria even in apparently healthy pregnancies delivered at term; usually this occurs in the absence of a significant local inflammatory response. It appears, therefore, that the site, nature, and magnitude of the immune response to infiltrating microorganisms are key in determining pregnancy outcome. Some evidence exists that the maternal serological response to Ureaplasma sp. colonization may be predictive of adverse pregnancy outcome, although issues such as the importance of virulence factors (serovars) and the timing, magnitude, and functional consequences of the immune response await clarification. This mini-review discusses the evidence linking the maternal immune response to risk of PTB and the potential applications of maternal serological analysis for predicting obstetric outcome.
    Frontiers in Immunology 12/2014; 5:624. DOI:10.3389/fimmu.2014.00624
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aim. To determine among infants born before the 28th week of gestation to what extent blood gas abnormalities during the first three postnatal days provide information about the risk of bronchopulmonary dysplasia (BPD). Methods. We studied the association of extreme quartiles of blood gas measurements (hypoxemia, hyperoxemia, hypocapnea, and hypercapnea) in the first three postnatal days, with bronchopulmonary dysplasia, among 906 newborns, using multivariable models adjusting for potential confounders. We approximated NIH criteria by classifying severity of BPD on the basis of the receipt of any O2 on postnatal day 28 and at 36 weeks PMA and assisted ventilation. Results. In models that did not adjust for ventilation, hypoxemia was associated with increased risk of severe BPD and very severe BPD, while infants who had hypercapnea were at increased risk of very severe BPD only. In contrast, infants who had hypocapnea were at reduced risk of severe BPD. Including ventilation for 14 or more days eliminated the associations with hypoxemia and with hypercapnea and made the decreased risk of very severe BPD statistically significant. Conclusions. Among ELGANs, recurrent/persistent blood gas abnormalities in the first three postnatal days convey information about the risk of severe and very severe BPD.
    International Journal of Pediatrics 01/2014; 2014:210218. DOI:10.1155/2014/210218
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of human placental multipotent mesenchymal stromal cells (hPMSCs) in placental inflammation is unknown. We hypothesize that hPMSCs are involved in the early phases of bacterial infection. hPMSCs were isolated from term placentas and neutrophils from peripheral blood. The expression of toll-like receptors (TLR) and cytokines by hPMSCs was determined by RT-PCR, flow cytometry and enzyme-linked immunosorbent assay (ELISA). The effect of conditioned medium of hPMSCs with or without lipopolysaccharide (LPS) pretreatment on neutrophil functions: migration, apoptosis and production of reactive oxygen species (ROS) was assessed by flow cytometry and Western blot. hPMSCs expressed TLR1, TLR3, TLR4, TLR6, TLR7 and TLR9. LPS stimulation increased the expression of TLR4 and the production of IL-6 and IL-8 by hPMSCs. Neutrophils exhibited chemotaxis to hPMSC-conditioned medium, which was inhibited by IL-8 depletion. Neutrophil CD11b activation was promoted by hPMSC-conditioned medium, which was further enhanced in media from hPMSCs pretreated with LPS. hPMSC-conditioned medium reduced neutrophil ROS production. Neutrophil phagocytosis was increased by LPS alone but not by hPMSC-conditioned medium with or without LPS stimulation. hPMSC-conditioned medium induced STAT3 activation in neutrophils, which was inhibited by neutralizing antibody to IL-6. hPMSC-conditioned medium rescued neutrophils from apoptosis, but this effect was significantly reduced in conditioned medium of hPMSCs with LPS pretreatment. Depletion of IL-6 from the conditioned medium further inhibited the anti-apoptotic effect on neutrophils. Our results demonstrate that hPMSCs can interact with peripheral blood neutrophils in response to inflammatory signals of the placenta. Cytokines produced by hPMSCs can induce neutrophil chemotaxis and reduce neutrophil apoptosis.
    Molecular Human Reproduction 08/2014; 20(11). DOI:10.1093/molehr/gau062 · 3.48 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
Jun 10, 2014