Theory of gelation, vitrification, and activated barrier hopping in mixtures of hard and sticky spheres.

Department of Chemical and Biomolecular Engineering, University of Illinois, 1304 West Green Street, Urbana, Illinois 61801, USA.
The Journal of Chemical Physics (Impact Factor: 3.16). 03/2008; 128(8):084509. DOI: 10.1063/1.2837295
Source: PubMed

ABSTRACT Naive mode coupling theory (NMCT) and the nonlinear stochastic Langevin equation theory of activated dynamics have been generalized to mixtures of spherical particles. Two types of ideal nonergodicity transitions are predicted corresponding to localization of both, or only one, species. The NMCT transition signals a dynamical crossover to activated barrier hopping dynamics. For binary mixtures of equal diameter hard and attractive spheres, a mixture composition sensitive "glass-melting" type of phenomenon is predicted at high total packing fractions and weak attractions. As the total packing fraction decreases, a transition to partial localization occurs corresponding to the coexistence of a tightly localized sticky species in a gel-like state with a fluid of hard spheres. Complex behavior of the localization lengths and shear moduli exist because of the competition between excluded volume caging forces and attraction-induced physical bond formation between sticky particles. Beyond the NMCT transition, a two-dimensional nonequilibrium free energy surface emerges, which quantifies cooperative activated motions. The barrier locations and heights are sensitive to the relative amplitude of the cooperative displacements of the different species.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We generalize the microscopic naïve mode coupling and nonlinear Langevin equation theories of the coupled translation-rotation dynamics of dense suspensions of uniaxial colloids to treat the effect of applied stress on shear elasticity, cooperative cage escape, structural relaxation, and dynamic and static yielding. The key concept is a stress-dependent dynamic free energy surface that quantifies the center-of-mass force and torque on a moving colloid. The consequences of variable particle aspect ratio and volume fraction, and the role of plastic versus double glasses, are established in the context of dense, glass-forming suspensions of hard-core dicolloids. For low aspect ratios, the theory provides a microscopic basis for the recently observed phenomenon of double yielding as a consequence of stress-driven sequential unlocking of caging constraints via reduction of the distinct entropic barriers associated with the rotational and translational degrees of freedom. The existence, and breadth in volume fraction, of the double yielding phenomena is predicted to generally depend on both the degree of particle anisotropy and experimental probing frequency, and as a consequence typically occurs only over a window of (high) volume fractions where there is strong decoupling of rotational and translational activated relaxation. At high enough concentrations, a return to single yielding is predicted. For large aspect ratio dicolloids, rotation and translation are always strongly coupled in the activated barrier hopping event, and hence for all stresses only a single yielding process is predicted.
    The Journal of Chemical Physics 04/2012; 136(15):154902. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microscopic nonlinear Langevin equation theory of activated glassy dynamics is applied to dense fluids of spherical particles that interact via a finite range Hertzian contact soft repulsion. The activation barrier and mean alpha relaxation time are predicted to be rich functions of volume fraction and particle stiffness, exhibiting a non-monotonic variation with concentration at high volume fractions. The latter is due to a structural "soft jamming" crossover where the real space local cage order weakens when soft particles significantly overlap. The highly variable dependences of the relaxation time on temperature and volume fraction are reasonably well collapsed onto two distinct master curves that are qualitatively consistent with a recent scaling ansatz and computer simulation study. A kinetic vitrification diagram is constructed and compared to its dynamic crossover analog. Intersection of the dynamic crossover and soft jamming threshold boundaries occurs for particles that are sufficiently soft, implying the nonexistence of a clear activated dynamics regime or kinetic arrest transition for such particles. The isothermal dynamic fragility is predicted to vary over a wide range as a function of particle stiffness, and soft particles behave as strong glasses. Qualitative comparisons with simulations and microgel experiments reveal good agreement.
    The Journal of Chemical Physics 05/2011; 134(20):204908. · 3.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between kinetic arrest, connectivity percolation, structure and phase separation in protein, nanoparticle, and colloidal suspensions is a rich and complex problem. Using a combination of integral equation theory, connectivity percolation methods, naïve mode coupling theory, and the activated dynamics nonlinear Langevin equation approach, we study this problem for isotropic one-component fluids of spheres and variable aspect ratio rigid rods, and also percolation in rod-sphere mixtures. The key control parameters are interparticle attraction strength and its (short) spatial range, total packing fraction, and mixture composition. For spherical particles, formation of a homogeneous one-phase kinetically stable and percolated physical gel is predicted to be possible, but depends on non-universal factors. On the other hand, the dynamic crossover to activated dynamics and physical bond formation, which signals discrete cluster formation below the percolation threshold, almost always occurs in the one phase region. Rods more easily gel in the homogeneous isotropic regime, but whether a percolation or kinetic arrest boundary is reached first upon increasing interparticle attraction depends sensitively on packing fraction, rod aspect ratio and attraction range. Overall, the connectivity percolation threshold is much more sensitive to attraction range than either the kinetic arrest or phase separation boundaries. Our results appear to be qualitatively consistent with recent experiments on polymer-colloid depletion systems and brush mediated attractive nanoparticle suspensions.
    The Journal of Chemical Physics 12/2011; 135(23):234902. · 3.16 Impact Factor