Article

Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.

Department of Chemistry, Rutgers University, Newark, New Jersey 07102, USA.
Biochemistry (Impact Factor: 3.38). 04/2008; 47(12):3800-9. DOI: 10.1021/bi702302u
Source: PubMed

ABSTRACT Direct spectroscopic observation of thiamin diphosphate-bound intermediates was achieved on the enzyme benzaldehyde lyase, which carries out reversible and highly enantiospecific conversion of ( R)-benzoin to benzaldehyde. The key enamine intermediate could be observed at lambda max 393 nm in the benzoin breakdown direction and in the decarboxylase reaction starting with benzoylformate. With benzaldehyde as substrate, no intermediates could be detected, only formation of benzoin at 314 nm. To probe the rate-limiting step in the direction of ( R)-benzoin synthesis, the (1)H/ (2)H kinetic isotope effect was determined for benzaldehyde labeled at the aldehyde position and found to be small (1.14 +/- 0.03), indicating that ionization of the C2alphaH from C2alpha-hydroxybenzylthiamin diphosphate is not rate limiting. Use of the alternate substrates benzoylformic and phenylpyruvic acids (motivated by the observation that while a carboligase, benzaldehyde lyase could also catalyze the slow decarboxylation of 2-oxo acids) enabled the observation of the substrate-thiamin covalent intermediate via the 1',4'-iminopyrimidine tautomer, characteristic of all intermediates with a tetrahedral C2 substituent on ThDP. The reaction of benzaldehyde lyase with the chromophoric substrate analogue ( E)-2-oxo-4(pyridin-3-yl)-3-butenoic acid and its decarboxylated product ( E)-3-(pyridine-3-yl)acrylaldehyde enabled the detection of covalent adducts with both. Neither adduct underwent further reaction. An important finding of the studies is that all thiamin-related intermediates are in a chiral environment on benzaldehyde lyase as reflected by their circular dichroism signatures.

0 Bookmarks
 · 
124 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review is focused on three types of enzymes decarboxylating very different substrates: (1) Thiamin diphosphate (ThDP)-dependent enzymes reacting with 2-oxo acids; (2) Pyridoxal phosphate (PLP)-dependent enzymes reacting with α-amino acids; and (3) An enzyme with no known co-factors, orotidine 5'-monophosphate decarboxylase (OMPDC). While the first two classes have been much studied for many years, during the past decade studies of both classes have revealed novel mechanistic insight challenging accepted understanding. The enzyme OMPDC has posed a challenge to the enzymologist attempting to explain a 10(17)-fold rate acceleration in the absence of cofactors or even metal ions. A comparison of the available evidence on the three types of decarboxylases underlines some common features and more differences. The field of decarboxylases remains an interesting and challenging one for the mechanistic enzymologist notwithstanding the large amount of information already available.
    ACS Catalysis 07/2013; 3(7):1601-1617. · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoketolase (PK) is a thiamine diphosphate (THDP) dependent enzyme which plays key roles in the metabolism of heterofermentative bacteria. By using density functional theory (DFT) method, the catalytic mechanism of PK has been studied on simplified models. The calculation results indicate that the formation of 2-α,β-dihydroxyethylidene-THDP (DHETHDP) and erythrose-4-phosphate (E4P) involves one C–C bond formation and one C–C bond cleavage process. Each C–C bond formation or cleavage is always accompanied by a proton transfer in a concerted but asynchronous way. The dehydration process in the reaction of PK is distinct from that of other THDP-dependent enzymes. The Keto–Enol tautomerism process is assisted with a mediator His553. His64, His553 and His97 are found to have the function to stabilize the transition states and intermediates. His64 is a better candidate of B1 catalyst. His553 acts as a proton donor to protonate the carbonyl oxygen, and plays intermediary role in the Keto–Enol tautomerism process. His97 is the probable B2 catalyst in the dehydration process.
    Computational and Theoretical Chemistry. 01/2013; 1025:1–7.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We summarize the currently available information regarding the state of ionization and tautomerization of the 4'-aminopyrimidine ring of the thiamine diphosphate on enzymes requiring this coenzyme. This coenzyme forms a series of covalent intermediates with its substrates as an electrophilic catalyst, and the coenzyme itself also carries out intramolecular proton transfers, which is virtually unprecedented in coenzyme chemistry. An understanding of the state of ionization and tautomerization of the 4'-aminopyrimidine ring in each of these intermediates provides important details about proton movements during catalysis. CD spectroscopy, both steady-state and time-resolved, has proved crucial for obtaining this information because no other experimental method has provided such atomic detail so far.
    FEBS Journal 06/2009; 276(9):2432-46. · 4.25 Impact Factor

Similar Publications