Article

Using clinical factors and mammographic breast density to estimate breast cancer risk: development and validation of a new predictive model.

Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California 94143-1732, USA.
Annals of internal medicine (Impact Factor: 16.1). 04/2008; 148(5):337-47.
Source: PubMed

ABSTRACT Current models for assessing breast cancer risk are complex and do not include breast density, a strong risk factor for breast cancer that is routinely reported with mammography.
To develop and validate an easy-to-use breast cancer risk prediction model that includes breast density.
Empirical model based on Surveillance, Epidemiology, and End Results incidence, and relative hazards from a prospective cohort.
Screening mammography sites participating in the Breast Cancer Surveillance Consortium.
1,095,484 women undergoing mammography who had no previous diagnosis of breast cancer.
Self-reported age, race or ethnicity, family history of breast cancer, and history of breast biopsy. Community radiologists rated breast density by using 4 Breast Imaging Reporting and Data System categories.
During 5.3 years of follow-up, invasive breast cancer was diagnosed in 14,766 women. The breast density model was well calibrated overall (expected-observed ratio, 1.03 [95% CI, 0.99 to 1.06]) and in racial and ethnic subgroups. It had modest discriminatory accuracy (concordance index, 0.66 [CI, 0.65 to 0.67]). Women with low-density mammograms had 5-year risks less than 1.67% unless they had a family history of breast cancer and were older than age 65 years.
The model has only modest ability to discriminate between women who will develop breast cancer and those who will not.
A breast cancer prediction model that incorporates routinely reported measures of breast density can estimate 5-year risk for invasive breast cancer. Its accuracy needs to be further evaluated in independent populations before it can be recommended for clinical use.

0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast density and single-nucleotide polymorphisms (SNPs) have both been associated with breast cancer risk. To determine the extent to which these two breast cancer risk factors are associated, we investigate the association between a panel of validated SNPs related to breast cancer and quantitative measures of mammographic density in a cohort of Caucasian and African-American women. In this IRB-approved, HIPAA-compliant study, we analyzed a screening population of 639 women (250 African American and 389 Caucasian) who were tested with a validated panel assay of 12 SNPs previously associated to breast cancer risk. Each woman underwent digital mammography as part of routine screening and all were interpreted as negative. Both absolute and percent estimates of area and volumetric density were quantified on a per-woman basis using validated software. Associations between the number of risk alleles in each SNP and the density measures were assessed through a race-stratified linear regression analysis, adjusted for age, BMI, and Gail lifetime risk. The majority of SNPs were not found to be associated with any measure of breast density. SNP rs3817198 (in LSP1) was significantly associated with both absolute area (p = 0.004) and volumetric (p = 0.019) breast density in Caucasian women. In African-American women, SNPs rs3803662 (in TNRC9/TOX3) and rs4973768 (in NEK10) were significantly associated with absolute (p = 0.042) and percent (p = 0.028) volume density respectively. The majority of SNPs investigated in our study were not found to be significantly associated with breast density, even when accounting for age, BMI, and Gail risk, suggesting that these two different risk factors contain potentially independent information regarding a woman's risk to develop breast cancer. Additionally, the few statistically significant associations between breast density and SNPs were different for Caucasian versus African American women. Larger prospective studies are warranted to validate our findings and determine potential implications for breast cancer risk assessment.
    BMC Cancer 01/2015; 15(1):1159. DOI:10.1186/s12885-015-1159-3 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One measure of Breast Imaging Reporting and Data System (BI-RADS) breast density improves 5-year breast cancer risk prediction, but the value of sequential measures is unknown. We determined if two BI-RADS density measures improves the predictive accuracy of the Breast Cancer Surveillance Consortium 5-year risk model compared to one measure. We included 722,654 women aged 35-74 years with two mammograms with BI-RADS density measures on average 1.8 years apart; 13,715 developed invasive breast cancer. We used Cox regression to estimate the relative hazards of breast cancer for age, race/ethnicity, family history of breast cancer, history of breast biopsy, and one or two density measures. We developed a risk prediction model by combining these estimates with 2000-2010 Surveillance, Epidemiology, and End Results incidence and 2010 vital statistics for competing risk of death. The two-measure density model had marginally greater discriminatory accuracy than the one-measure model (AUC=0.640 vs. 0.635). Of 18.6% of women (134,404/722,654) who decreased density categories, 15.4% (20,741/134,404) of women whose density decreased from heterogeneously or extremely dense to a lower density category with one other risk factor had a clinically meaningful increase in 5-year risk from <1.67% with the one-density model to ≥1.67% with the two-density model. The two-density model has similar overall discrimination to the one-density model for predicting 5-year breast cancer risk and improves risk classification for women with risk factors and a decrease in density. A two-density model should be considered for women whose density decreases when calculating breast cancer risk. Copyright © 2015, American Association for Cancer Research.
    Cancer Epidemiology Biomarkers & Prevention 03/2015; DOI:10.1158/1055-9965.EPI-15-0035 · 4.32 Impact Factor
  • Source
    Cancer Research 02/2012; 71(24 Supplement):P4-11-07-P4-11-07. DOI:10.1158/0008-5472.SABCS11-P4-11-07 · 9.28 Impact Factor

Full-text (2 Sources)

Download
46 Downloads
Available from
May 20, 2014