Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine

Institute of Nuclear Chemistry, Johannes Gutenberg-University of Mainz, Mainz, Germany.
Clinical Cancer Research (Impact Factor: 8.19). 04/2008; 14(5):1377-85. DOI: 10.1158/1078-0432.CCR-07-1516
Source: PubMed

ABSTRACT We recently reported that anionic phospholipids, principally phosphatidylserine, become exposed on the external surface of vascular endothelial cells in tumors, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we tested the hypothesis that a chimeric monoclonal antibody that binds phosphatidylserine could be labeled with radioactive arsenic isotopes and used for molecular imaging of solid tumors in rats.
Bavituximab was labeled with (74)As (beta(+), T(1/2) 17.8 days) or (77)As (beta(-), T(1/2) 1.6 days) using a novel procedure. The radionuclides of arsenic were selected because their long half-lives are consistent with the long biological half lives of antibodies in vivo and because their chemistry permits stable attachment to antibodies. The radiolabeled antibodies were tested for the ability to image subcutaneous Dunning prostate R3227-AT1 tumors in rats.
Clear images of the tumors were obtained using planar gamma-scintigraphy and positron emission tomography. Biodistribution studies confirmed the specific localization of bavituximab to the tumors. The tumor-to-liver ratio 72 h after injection was 22 for bavituximab compared with 1.5 for an isotype-matched control chimeric antibody of irrelevant specificity. Immunohistochemical studies showed that the bavituximab was labeling the tumor vascular endothelium.
These results show that radioarsenic-labeled bavituximab has potential as a new tool for imaging the vasculature of solid tumors.


Available from: Nikolai Slavine, Apr 19, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatidylserine (PS) that is normally constrained to the inner plasma membrane becomes exposed on the surface of endothelial cells (ECs) in tumor vasculature. In the present study, we report the development of a novel tumor vasculature-targeted liposomal nanoprobe by conjugating a human monoclonal antibody, PGN635 that specifically targets PS to polyethylene glycol-coated liposomes. MR contrast, superparamagnetic iron oxide nanoparticles (SPIO) were packed into the core of liposomes, while near-infrared dye, DiR was incorporated into the lipophilic bilayer. The liposomal nanoprobe PGN-L-IO/DiR was fully characterized, and its binding specificity and subsequent internalization into PS-exposed vascular ECs was confirmed by in vitro MRI and histological staining. In vivo longitudinal MRI and optical imaging were performed after i.v. injection of the liposomal nanoprobes into mice bearing breast MDA-MB231 tumors. At 9.4T, T2-weighted MRI detected drastic reduction on signal intensity and T2 values of tumors at 24h. Ionizing radiation significantly increased PS exposure on tumor vascular ECs, resulting in a further MRI signal loss of tumors. Concurrent with MRI, optical imaging revealed a clear tumor contrast at 24h. Intriguingly, PGN-L-IO/DiR exhibited distinct pharmacokinetics and biodistribution with significantly reduced accumulations in liver or spleen. Localization of PGN-L-IO/DiR to tumor was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the tumors. Our studies indicate that PS-targeted liposomes may provide a useful platform for tumor-targeted delivery of imaging contrast agents or potentially anti-cancer drugs for cancer theranostics.
    Journal of Controlled Release 06/2014; DOI:10.1016/j.jconrel.2014.03.043 · 7.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable endothelial cells in tumor vasculature, but not in normal blood vessels. In the present study, we report the use of PGN635, a novel human monoclonal antibody that specifically targets PS, for in vivo molecular MRI of tumor vasculature. The F(ab')2 fragments of PGN635 were conjugated to polyethylene glycol (PEG) coated iron oxide nanoparticles (IO). Targeting specificity of the PS-targeted Nanoprobe, IO-PGN635F(ab')2 was first confirmed by in vitro MRI and histological staining. In vivo longitudinal MRI was then performed before and after i.v. injection of IO-PGN635F(ab')2 into mice bearing 4T1 breast tumors. T2-weighted MR images at 9.4 T revealed inhomogeneous signal loss in tumor as early as 2 h post injection. Furthermore, ionizing radiation induced a significant increase in PS exposure on tumor vascular endothelial cells, resulting in significantly enhanced and sustained tumor contrast (p < 0.05). Spatially heterogeneous MRI contrast correlated well with histological staining of tumor vascular endothelium. Our studies suggest that PS exposed within the lumen of tumor vasculature is a highly specific and useful biomarker for targeted MRI contrast agents.
    Journal of Biomedical Nanotechnology 05/2014; 10(5):846-55. DOI:10.1166/jbn.2014.1851 · 7.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single-molecule approaches to chemical reaction analysis can provide information that is not accessible by studying ensemble systems. Changes in the molecular structures of compounds tethered to the inner wall of a protein pore are known to affect the current carried through the pore by aqueous ions under a fixed applied potential. Here, we use this approach to study the substitution reactions of arsenic(III) compounds with thiols, stretching the limits of the protein pore technology to track the interconversion of seven reaction components in a network that comprises interconnected Walden cycles. Single-molecule pathway analysis of 'allowed' and 'forbidden' reactions reveals that sulfur-sulfur substitution occurs with stereochemical inversion at the arsenic centre. Hence, we demonstrate that the nanoreactor approach can be a valuable technique for the analysis of dynamic reaction systems of relevance to biology.
    Nature Chemistry 07/2014; 6(7):603-7. DOI:10.1038/nchem.1949 · 23.30 Impact Factor