Article

Bactofection of lung epithelial cells in vitro and in vivo using a genetically modified Escherichia coli.

Department of Gene Therapy, Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, UK.
Gene therapy (Impact Factor: 4.2). 04/2008; 15(6):434-42. DOI: 10.1038/sj.gt.3303090
Source: PubMed

ABSTRACT Bacteria-mediated gene transfer ('bactofection') has emerged as an alternative approach for genetic vaccination and gene therapy. Here, we assessed bactofection of airway epithelial cells in vitro and in vivo using an attenuated Escherichia coli genetically engineered to invade non-phagocytic cells. Invasive E. coli expressing green fluorescent protein (GFP) under the control of a prokaryotic promoter was efficiently taken up into the cytoplasm of cystic fibrosis tracheal epithelial (CFTE29o-) cells and led to dose-related reporter gene expression. In vivo experiments showed that following nasal instillation the vast majority of GFP-positive bacteria pooled in the alveoli. Further, bactofection was assessed in vivo. Mice receiving 5 x 10(8) E. coli carrying pCIKLux, in which luciferase (lux) expression is under control of the eukaryotic cytomegalovirus (CMV) promoter, showed a significant increase (P<0.01) in lux activity in lung homogenates compared to untransfected mice. Surprisingly, similar level of lux activity was observed for the non-invasive control strain indicating that the eukaryotic CMV promoter might be active in E. coli. Insertion of prokaryotic transcription termination sequences into pCIKLux significantly reduced prokaryotic expression from the CMV promoter allowing bactofection to be detected in vitro and in vivo. However, bacteria-mediated gene transfer leads to a significantly lower lux expression than cationic lipid GL67-mediated gene transfer. In conclusion, although proof-of-principle for lung bactofection has been demonstrated, levels were low and further modification to the bacterial vector, vector administration and the plasmids will be required.

Full-text

Available from: Dieter C Gruenert, Jun 04, 2014
0 Followers
 · 
115 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is no safe, effective human vaccine against brucellosis. Live attenuated Brucella strains are widely used to vaccinate animals. However these live Brucella vaccines can cause disease and are unsafe for humans. Killed Brucella or subunit vaccines are not effective in eliciting long term protection. In this study, we evaluate an approach using a live, non-pathogenic bacteria (E. coli) genetically engineered to mimic the brucellae pathway of infection and present antigens for an appropriate cytolitic T cell response. E. coli was modified to express invasin of Yersinia and listerialysin O (LLO) of Listeria to impart the necessary infectivity and antigen releasing traits of the intracellular pathogen, Brucella. This modified E. coli was considered our vaccine delivery system and was engineered to express Green Fluorescent Protein (GFP) or Brucella antigens for in vitro and in vivo immunological studies including cytokine profiling and cytotoxicity assays. The E. coli vaccine vector was able to infect all cells tested and efficiently deliver therapeutics to the host cell. Using GFP as antigen, we demonstrate that the E. coli vaccine vector elicits a Th1 cytokine profile in both primary and secondary immune responses. Additionally, using this vector to deliver a Brucella antigen, we demonstrate the ability of the E. coli vaccine vector to induce specific Cytotoxic T Lymphocytes (CTLs). Protection against most intracellular bacterial pathogens can be obtained mostly through cell mediated immunity. Data presented here suggest modified E. coli can be used as a vaccine vector for delivery of antigens and therapeutics mimicking the infection of the pathogen and inducing cell mediated immunity to that pathogen.
    Journal of Immune Based Therapies and Vaccines 02/2009; 7:1. DOI:10.1186/1476-8518-7-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several bacterial species have inherent ability to colonize solid tumors in vivo. However, their natural anti-tumor activity can be enhanced by genetic engineering that enables these bacteria express or transfer therapeutic molecules into target cells. In this review, we summarize latest research on cancer therapy using genetically modified bacteria with particular emphasis on blocking tumor angiogenesis. Despite recent progress, only a few recent studies on bacterial tumor therapy have focused on anti-angiogenesis. Bacteria-mediated anti-angiogenesis therapy for cancer, however, is an attractive approach given that solid tumors are often characterized by increased vascularization. Here, we discuss four different approaches for using modified bacteria as anti-cancer therapeutics--bactofection, DNA vaccination, alternative gene therapy and transkingdom RNA interference--with a specific focus on angiogenesis suppression. Critical areas and future directions for this field are also outlined.
    Gene therapy 01/2011; 18(5):425-31. DOI:10.1038/gt.2010.176 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Predictable engineering of complex biological behaviors using characterized molecular functions remains a key challenge in synthetic biology. To explore the process of engineering biological behaviors, we applied a modular design strategy to the development of E. coli that deliver macromolecules to the cytoplasm of cancer cells in vitro. First, we specified five abstract, qualitative behaviors that would act in concert to achieve payload delivery. Drawing from disparate sources of previously described genetic components, we then designed, constructed, and tested individual genetic circuits to implement each module. Subsequent coupling of the modules and system optimization, aided by quantitative predictions, generated a system that delivers proteins to 80% of targeted cancer cells. Development of an effective delivery system provides strong evidence that advanced cellular behaviors, not just transcriptional circuits, can be rationally decomposed into a series of functional genetic modules and then constructed to achieve the target activity with the existing synthetic biology toolkit.
    ACS Synthetic Biology 03/2013; 2(8). DOI:10.1021/sb300107h · 3.95 Impact Factor