The uraemic retention solute para-hydroxy-hippuric acid attenuates apoptosis of polymorphonuclear leukocytes from healthy subjects but not from haemodialysis patients

Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Austria.
Nephrology Dialysis Transplantation (Impact Factor: 3.58). 04/2008; 23(8):2512-9. DOI: 10.1093/ndt/gfn098
Source: PubMed


Disturbed polymorphonuclear leukocyte (PMNL) apoptosis contributes to the dysregulation of the non-specific immune system in uraemia. Intracellular Ca(2+) modulates PMNL apoptotic cell death. We investigated the effect of para-hydroxy-hippuric acid (PHA), an erythrocyte plasma membrane Ca(2+)-ATPase inhibitor accumulating in uraemic sera, and of cyclopiazonic acid (CPA), an inhibitor of the sarko/endoplasmatic Ca(2+)-ATPase, on PMNL apoptosis.
Apoptosis of PMNLs from healthy subjects and from haemodialysis (HD) patients was assessed after incubation for 20 h by evaluating morphological features under the fluorescence microscope and by measuring the DNA content and caspase activities by flow cytometry. The intracellular calcium concentration ([Ca(2+)](i)) was determined by measurement of fura-2 fluorescence using the 340/ 380 nm dual wavelength excitation.
Spontaneous apoptosis of PMNLs from healthy subjects and from HD patients did not differ. PHA significantly attenuated, while CPA increased, the apoptotic cell death of PMNLs from healthy subjects. The PHA effect was not observed with PMNLs from HD patients, irrespective of whether the blood was drawn before or after HD treatment. Baseline [Ca(2+)](i) was increased in PMNLs obtained from HD patients before dialysis but reversed after dialysis. The PHA effects were not mediated via [Ca(2+)](i). The chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) induced a [Ca(2+)](i) increase and reduced PMNL survival. Extracellular Ca(2+) did not affect CPA- and fMLP-induced apoptosis.
PHA, without affecting [Ca(2+)](i), attenuates apoptosis of healthy but not of uraemic PMNLs. CPA and fMLP enhance PMNL apoptosis independently of Ca(2+) influx.

Download full-text


Available from: Gerald Cohen, Oct 10, 2015
14 Reads
  • Source
    • "Aside from biological modulators, PMCA activity may also be influenced by external factors, such as pore-forming toxins. So far, the following plasma toxins in erythrocyte hemolysates have been shown to act as PMCA inhibitors: dimethylguanosine, phenylethylamine, phenyl acid, and para-hydroxy-hippuric acid [25–28]. The low lipophilicity of these factors limits their activity within the cell. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In the course of chronic kidney disease (CKD) the intracellular erythrocyte calcium (Ca (i) (2+) ) level increases along with the progression of the disease. The decreased activity of Ca(2+)-Mg(2+)-dependent ATP-ase (PMCA) and its endogenous modulators calmodulin (CALM), calpain (CANP), and calpastatin (CAST) are all responsible for disturbed calcium metabolism. The aim of the study was to analyze the activity of PMCA, CALM, and the CANP-CAST system in the red blood cells (RBCs) of hemodialyzed (HD) children and to estimate the impact of a single HD session on the aforementioned disturbances. Eighteen patients on maintenance HD and 30 healthy subjects were included in the study. CALM, Ca (i) (2+) levels and basal PMCA (bPMCA), PMCA, CANP, and CAST activities were determined in RBCs before HD, after HD, and before the next HD session. Prior to the HD session, the level of Ca (i) (2+) and the CAST activity were significantly higher, whereas bPMCA, PMCA, and CANP activities and the CALM level were significantly lower than in controls. After the HD session, the Ca (i) (2+) concentration and the CAST activity significantly decreased compared with the basal values, whereas the other parameters significantly increased, although they did not reach the levels of healthy children. The values observed prior to both HD sessions were similar. Ca (i) (2+) homeostasis is severely disturbed in HD children, which may be caused by the reduction in the PMCA activity, CALM deficiency, and CANP-CAST system disturbances. A single HD session improved these disturbances but the effect is transient.
    Pediatric Nephrology 09/2010; 25(12):2501-7. DOI:10.1007/s00467-010-1634-7 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we report a metabolomics discovery study conducted on blood serum samples of patients in different stages of chronic kidney disease (CKD). Metabolites were monitored on a quality controlled holistic platform combining reversed-phase liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry in both negative and positive ionization mode and gas chromatography coupled to quadrupole mass spectrometry. A substantial portion of the serum metabolome was thereby covered. Eighty-five metabolites were shown to evolve with CKD progression of which 43 metabolites were a confirmation of earlier reported uremic retention solutes and/or uremic toxins. Thirty-one unique metabolites were revealed which were increasing significantly throughout CKD progression, by a factor surpassing the level observed for creatinine, the currently used biomarker for kidney function. Additionally, 11 unique metabolites showed a decreasing trend.
    Metabolomics 06/2013; 10(3). DOI:10.1007/s11306-013-0592-z · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein-bound uremic retention solutes constitute a group whose common characteristic is their difficult removal by dialysis. In 2003, the EUTox group described 25 protein-bound solutes. They comprised six advanced glycation end products (AGE), four phenols (including p-cresol), six indoles (including indoxylsulfate), two hippurates, three polyamines, and two peptides, homocysteine and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF). As then, three new compounds have been added to the list: phenylacetic acid, dinucleoside polyphosphates, and IL-18. During the last years, protein-bound compounds have been identified as some of the main toxins involved in vascular lesions of chronic kidney disease. The removal of these solutes by conventional hemodialysis (HD) is low because only the free fraction of the solute is available for diffusion. The increase in the convective part with hemodiafiltration improves the performance of depuration but convection only applies to the free fraction and its benefit is limited. One possibility to improve the removal of a protein-bound solute would be to stimulate its dissociation from the binding protein. This could be obtained in experiments by setting the dialysate flow rate and the dialyzer mass transfer area coefficient (KoA) at much higher levels than the plasma flow rate, or by adding to the dialysate a sorbent such as activated charcoal or albumin. In the future, specific adsorbents may be developed. Today, the only possibility is to use approaches such as daily HD and long HD which could allow better equilibration between extravascular and vascular compartments and consequently result in greater removal of protein-bound compounds.
    Seminars in Dialysis 07/2009; 22(4). DOI:10.1111/j.1525-139X.2009.00576.x · 1.75 Impact Factor
Show more