Article

Dysfunctional interferon-α production by peripheral plasmacytoid dendritic cells upon Toll-like receptor-9 stimulation in patients with systemic lupus erythematosus

Department of Medicine, Division of Rheumatology, Center for Rheumatic Diseases and Rheumatism Research Center, Catholic Research Institutes of Medical Sciences, Catholic University of Korea, Seoul.
Arthritis research & therapy (Impact Factor: 4.12). 02/2008; 10(2):R29. DOI: 10.1186/ar2382
Source: PubMed

ABSTRACT It is well known that interferon (IFN)-alpha is important to the pathogenesis of systemic lupus erythematosus (SLE). However, several reports have indicated that the number of IFN-alpha producing cells are decreased or that their function is defective in patients with SLE. We studied the function of plasmacytoid dendritic cells (pDCs) under persistent stimulation of Toll-like receptor (TLR)9 via a TLR9 ligand (CpG ODN2216) or SLE serum.
The concentrations of IFN-alpha were determined in serum and culture supernatant of peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy controls after stimulation with CpG ODN2216 or SLE serum. The numbers of circulating pDCs were analyzed by fluoresence-activated cell sorting analysis. pDCs were treated with CpG ODN2216 and SLE serum repeatedly, and levels of produced IFN-alpha were measured. The expression of IFN-alpha signature genes and inhibitory molecules of TLR signaling were examined in PBMCs from SLE patients and healthy control individuals.
Although there was no significant difference in serum concentration of IFN-alpha and number of circulating pDCs between SLE patients and healthy control individuals, the IFN-alpha producing capacity of PBMCs was significantly reduced in SLE patients. Interestingly, the degree which TLR9 ligand-induced IFN-alpha production in SLE PBMCs was inversely correlated with the SLE serum-induced production of IFN-alpha in healthy PMBCs. Because repeated stimulation pDCs with TLR9 ligands showed decreased level of IFN-alpha production, continuous TLR9 stimulation may lead to decreased production of IFN-alpha in SLE PBMCs. In addition, PBMCs isolated from SLE patients exhibited higher expression of IFN-alpha signature genes and inhibitory molecules of TLR signaling, indicating that these cells had already undergone IFN-alpha stimulation and had become desensitized to TLR signaling.
We suggest that the persistent presence of endogenous IFN-alpha inducing factors induces TLR tolerance in pDCs of SLE patients, leading to impaired production of IFN-alpha.

Download full-text

Full-text

Available from: June-Yong Lee, Apr 24, 2014
0 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In healing wounds, some monocytes enter the wound and differentiate into fibroblast-like cells called fibrocytes. Since Toll-like receptors (TLRs) are present on monocytes, and pathogens that can infect a wound have and/or release TLR agonists, we examined whether TLR agonists affect fibrocyte differentiation. When human peripheral blood mononuclear cells (PBMCs) were cultured with TLR3, TLR4, TLR5, TLR7, TLR8 or TLR9 agonists, there was no significant effect on fibrocyte differentiation, even though enhanced extracellular tumor necrosis factor (TNF)-α accumulation and/or increased cell surface CD86 or major histocompatibility complex (MHC) class II levels were observed. However, all TLR2 agonists tested inhibited fibrocyte differentiation without any significant effect on cell survival. Adding TLR2 agonists to purified monocytes had no effect on fibrocyte differentiation. However, some TLR2 agonists caused PBMCs to secrete a factor that inhibits the differentiation of purified monocytes into fibrocytes. This factor is not interferon (IFN)-α, IFN-γ, interleukin (IL)-12, aggregated immunoglobulin G (IgG) or serum amyloid P (SAP), factors known to inhibit fibrocyte differentiation. TLR2 agonist-treated PBMCs secrete low levels of IL-6, TNF-α, IFN-γ, granulocyte colony-stimulating factor and tumor growth factor β1, but combinations of these factors had no effect on fibrocyte differentiation from purified monocytes. Our results indicate that TLR2 agonists indirectly inhibit fibrocyte differentiation and that, for some TLR2 agonists, this inhibition involves other cell types in the PBMC population secreting an unknown factor that inhibits fibrocyte differentiation. Together, these data suggest that the presence of some bacterial signals can inhibit fibrocyte differentiation and may thus slow wound closure.
    Fibrogenesis & Tissue Repair 11/2010; 3:23. DOI:10.1186/1755-1536-3-23
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About half of all subjects with common variable immune deficiency (CVID) are afflicted with inflammatory complications including hematologic autoimmunity, granulomatous infiltrations, interstitial lung disease, lymphoid hyperplasia and/or gastrointestinal inflammatory disease. The pathogenesis of these conditions is poorly understood but singly and in aggregate, these lead to significantly increased (11 fold) morbidity and mortality, not experienced by CVID subjects without these complications. To explore the dysregulated networks in these subjects, we applied whole blood transcriptional profiling to 91 CVID subjects, 47 with inflammatory conditions and 44 without, in comparison to subjects with XLA and healthy controls. As compared to other CVID subjects, males with XLA or healthy controls, the signature of CVID subjects with inflammatory complications was distinguished by a marked up-regulation of IFN responsive genes. Chronic up-regulation of IFN pathways is known to occur in autoimmune disease due to activation of TLRs and other still unclarified cytoplasmic sensors. As subjects with inflammatory complications were also more likely to be lymphopenic, have reduced B cell numbers, and a greater reduction of B, T and plasma cell networks, we suggest that more impaired adaptive immunity in these subjects may lead to chronic activation of innate IFN pathways in response to environmental antigens. The unbiased use of whole blood transcriptome analysis may provides a tool for distinguishing CVID subjects who are at risk for increased morbidity and earlier mortality. As more effective therapeutic options are developed, whole blood transcriptome analyses could also provide an efficient means of monitoring the effects of treatment of the inflammatory phenotype.
    PLoS ONE 09/2013; 8(9):e74893. DOI:10.1371/journal.pone.0074893 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmacytoid dendritic cells (pDCs) play not only a central role in the antiviral immune response in innate host defense, but also a pathogenic role in the development of the autoimmune process by their ability to produce robust amounts of type I interferons (IFNs), through sensing nucleic acids by toll-like receptor (TLR) 7 and 9. Thus, control of dysregulated pDC activation and type I IFN production provide an alternative treatment strategy for autoimmune diseases in which type I IFNs are elevated, such as systemic lupus erythematosus (SLE). Here we focused on IkappaB kinase inhibitor BAY 11-7082 (BAY11) and investigated its immunomodulatory effects in targeting the IFN response on pDCs. We isolated human blood pDCs by flow cytometry and examined the function of BAY11 on pDCs in response to TLR ligands, with regards to pDC activation, such as IFN-alpha production and nuclear translocation of interferon regulatory factor 7 (IRF7) in vitro. Additionally, we cultured healthy peripheral blood mononuclear cells (PBMCs) with serum from SLE patients in the presence or absence of BAY11, and then examined the inhibitory function of BAY11 on SLE serum-induced IFN-alpha production. We also examined its inhibitory effect in vivo using mice pretreated with BAY11 intraperitonealy, followed by intravenous injection of TLR7 ligand poly U. Here we identified that BAY11 has the ability to inhibit nuclear translocation of IRF7 and IFN-alpha production in human pDCs. BAY11, although showing the ability to also interfere with tumor necrosis factor (TNF)-alpha production, more strongly inhibited IFN-alpha production than TNF-alpha production by pDCs, in response to TLR ligands. We also found that BAY11 inhibited both in vitro IFN-alpha production by human PBMCs induced by the SLE serum and the in vivo serum IFN-alpha level induced by injecting mice with poly U. These findings suggest that BAY11 has the therapeutic potential to attenuate the IFN environment by regulating pDC function and provide a novel foundation for the development of an effective immunotherapeutic strategy against autoimmune disorders such as SLE.
    Arthritis research & therapy 05/2010; 12(3):R87. DOI:10.1186/ar3014 · 4.12 Impact Factor