Cue1p is an activator of Ubc7p E2 activity in vitro and in vivo

Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 06/2008; 283(19):12797-810. DOI: 10.1074/jbc.M801122200
Source: PubMed

ABSTRACT Ubc7p is a ubiquitin-conjugating enzyme (E2) that functions with endoplasmic reticulum (ER)-resident ubiquitin ligases (E3s) to promote endoplasmic reticulum-associated degradation (ERAD). Ubc7p only functions in ERAD if bound to the ER surface by Cue1p, a membrane-anchored ER protein. The role of Cue1p was thought to involve passive concentration of Ubc7p at the surface of the ER. However, our biochemical studies of Ubc7p suggested that Cue1p may, in addition, stimulate Ubc7p E2 activity. We have tested this idea and found it to be true both in vitro and in vivo. Ubc7p bound to the soluble domain of Cue1p showed strongly enhanced in vitro ubiquitination activity, both in the presence and absence of E3. Cue1p also enhanced Ubc7p function in vivo, and this activation was separable from the established ER-anchoring role of Cue1p. Finally, we tested in vivo activation of Ubc7p by Cue1p in an assay independent of the ER membrane and ERAD. A chimeric E2 linking Ubc7p to the Cdc34p/Ubc3p localization domain complemented the cdc34-2 TS phenotype, and co-expression of the soluble Cue1p domain enhanced complementation by this chimeric Ubc7p E2. These studies reveal a previously unobserved stimulation of Ubc7p E2 activity by Cue1p that is critical for full ERAD and that functions independently of the well known Cue1p anchoring function. Moreover, it suggests a previously unappreciated mode for regulation of E2s by Cue1p-like interacting partners.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A significant portion of ubiquitin (Ub)-dependent cellular protein quality control takes place at the endoplasmic reticulum (ER) in a process termed "ER-associated degradation" (ERAD). Yeast ERAD employs two integral ER membrane E3 Ub ligases: Hrd1 (also termed "Der3") and Doa10, which recognize a distinct set of substrates. However, both E3s bind to and activate a common E2-conjugating enzyme, Ubc7. Here we describe a novel feature of the ERAD system that entails differential activation of Ubc7 by its cognate E3s. We found that residues within helix α2 of Ubc7 that interact with donor Ub were essential for polyUb conjugation. Mutagenesis of these residues inhibited the in vitro activity of Ubc7 by preventing the conjugation of donor Ub to the acceptor. Unexpectedly, Ub chain formation by mutant Ubc7 was restored selectively by the Hrd1 RING domain but not by the Doa10 RING domain. In agreement with the in vitro data, Ubc7 α2 helix mutations selectively impaired the in vivo degradation of Doa10 substrates but had no apparent effect on the degradation of Hrd1 substrates. To our knowledge, this is the first example of distinct activation requirements of a single E2 by two E3s. We propose a model in which the RING domain activates Ub transfer by stabilizing a transition state determined by noncovalent interactions between the α2 helix of Ubc7 and Ub and that this transition state may be stabilized further by some E3 ligases, such as Hrd1, through additional interactions outside the RING domain.
    Proceedings of the National Academy of Sciences 02/2015; DOI:10.1073/pnas.1415621112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The modification of proteins with polyubiquitin chains alters their stability, localization and activity, thus regulating various aspects of cellular functions in eukaryotic cells. The ER quality control protein E3 gp78 catalyzes Lys48-linked polyubiquitin-chain- assembly on the Ube2g2 active site and is capable of transferring preassembled ubiquitin chains to its substrates. However, the underlying mechanism of polyubiquitin- chain-assembly remains elusive. Here, we demonstrate that the active site-linked ubiquitin chain is extended from the distal end by the cooperative actions of the G2BR and CUE domains of gp78. The G2BR domain is involved in ubiquitin chain synthesis by binding to the donor Ube2g2~Ub and promoting ubiquitin transfer from the E2 in cis. The CUE domain shows preferential binding to the ubiquitin chain compared to monoubiquitin and helps to position the distal ubiquitin in the correct orientation to attack the Ube2g2~Ub thioester bond. Our studies reveal that two interactions, one between the donor Ube2g2~Ub and the gp78 G2BR domain and another between the Ube2g2-linked ubiquitin chain and the gp78 CUE domain, cooperatively drive polyubiquitin-chain-assembly on the Ube2g2 active site.
    Scientific Reports 11/2014; 4:7138. DOI:10.1038/srep07138 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The endoplasmic reticulum (ER) is the primary organelle in eukaryotic cells where membrane and secreted proteins are inserted into or across cell membranes. Its membrane bilayer and luminal compartments provide a favorable environment for the folding and assembly of thousands of newly synthesized proteins. However, protein folding is intrinsically error-prone, and various stress conditions can further increase levels of protein misfolding and damage, particularly in the ER, which can lead to cellular dysfunction and disease. The ubiquitin-proteasome system (UPS) is responsible for the selective destruction of a vast array of protein substrates, either for protein quality control or to allow rapid changes in the levels of specific regulatory proteins. In this review, we will focus on the components and mechanisms of ER-associated protein degradation (ERAD), an important branch of the UPS. ER membranes extend from subcortical regions of the cell to the nuclear envelope, with its continuous outer and inner membranes; the nuclear envelope is a specialized subdomain of the ER. ERAD presents additional challenges to the UPS beyond those faced with soluble substrates of the cytoplasm and nucleus. These include recognition of sugar modifications that occur in the ER, retrotranslocation of proteins across the membrane bilayer, and transfer of substrates from the ER extraction machinery to the proteasome. Here, we review characteristics of ERAD substrate degradation signals (degrons), mechanisms underlying substrate recognition and processing by the ERAD machinery, and ideas on the still unresolved problem of how substrate proteins are moved across and extracted from the ER membrane.
    Critical Reviews in Biochemistry and Molecular Biology 09/2014; 50(1). DOI:10.3109/10409238.2014.959889 · 5.81 Impact Factor