Retrograde analyses of spinothalamic projections in the macaque monkey: input to the ventral lateral nucleus.

Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona 85013, USA.
The Journal of Comparative Neurology (Impact Factor: 3.51). 06/2008; 508(2):315-28. DOI: 10.1002/cne.21672
Source: PubMed

ABSTRACT The distribution of retrogradely labeled spinothalamic tract (STT) neurons was analyzed in monkeys following variously sized injections of cholera toxin subunit B (CTb) in order to determine whether different STT termination sites receive input from different sets of STT cells. This report focuses on STT input to the ventral lateral nucleus (VL), where prior anterograde tracing studies identified dense or moderately dense STT terminations. Large and very large injections in VL produced large numbers of labeled cells predominantly in laminae V and VII (more than half as many as from massive injections in the entire thalamus). Medium-sized and small injections in VL labeled STT cells almost exclusively in laminae V and VII, in segments consistent with the coarse mediolateral VL topography; few or no cells were labeled in lamina I. All injections labeled the deep cerebellar nuclei (see accompanying article: Evrard and Craig, 2008). Notably, even the most anterior injection in VL that produced dense pallidal labeling still labeled both STT and deep cerebellar cells. These observations indicate that VL receives STT input originating from laminae V and VII neurons that may be coextensive with its cerebellothalamic input. These findings support the role of laminae V and VII STT cells in sensorimotor integration and suggest a significant ongoing influence on both motor and premotor thalamocortical function. Together with the preceding observations of selective STT projections to other thalamic regions, these results provide compelling evidence that the primate STT consists of anatomically and functionally differentiable components.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Prior anterograde tracing work identified somatotopically organized lamina I trigemino- and spino-thalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig, 2004b). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise micro-injections of various tracers in VMpo. A prior report (Craig and Zhang, 2006) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the antero-posterior (head to foot) topography. The present report describes the results of micro-injections of anterograde tracers placed at different levels in VMpo, based on the antero-posterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent antero-posterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal-responsive and gustatory neurons in the basal part of the ventral medial nucleus (VMb). J. Comp. Neurol., 2013. © 2013 Wiley Periodicals, Inc.
    The Journal of Comparative Neurology 01/2014; 522(1). DOI:10.1002/cne.23425 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The descending projections from motor cortex share many features with top-down or backward connections in visual cortex; for example, corticospinal projections originate in infragranular layers, are highly divergent and (along with descending cortico-cortical projections) target cells expressing NMDA receptors. This is somewhat paradoxical because backward modulatory characteristics would not be expected of driving motor command signals. We resolve this apparent paradox using a functional characterisation of the motor system based on Helmholtz's ideas about perception; namely, that perception is inference on the causes of visual sensations. We explain behaviour in terms of inference on the causes of proprioceptive sensations. This explanation appeals to active inference, in which higher cortical levels send descending proprioceptive predictions, rather than motor commands. This process mirrors perceptual inference in sensory cortex, where descending connections convey predictions, while ascending connections convey prediction errors. The anatomical substrate of this recurrent message passing is a hierarchical system consisting of functionally asymmetric driving (ascending) and modulatory (descending) connections: an arrangement that we show is almost exactly recapitulated in the motor system, in terms of its laminar, topographic and physiological characteristics. This perspective casts classical motor reflexes as minimising prediction errors and may provide a principled explanation for why motor cortex is agranular.
    Brain Structure and Function 11/2012; 218(3). DOI:10.1007/s00429-012-0475-5 · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective To determine a neuro-anatomic cause for central neuropathic pain (CNP) observed in multiple sclerosis (MS) patients.Methods Parallel clinical and neuro-anatomical studies were performed. A clinical investigation of consecutively acquired MS patients with and without CNP (i.e. cold allodynia or deep hyperesthesia) within a single MS center was pursued. A multivariate logistic regression model was used to assess the relationship between an upper central thoracic spinal cord focus to central pain complaints. To identify the hypothesized autonomic interneurons with bilateral descending projections to lumbosacral sensory neurons, retrograde single- and double-labeling experiments with CTb and fluorescent tracers were performed in three animal species (i.e. rat, cat, and monkey).ResultsClinical data were available in MS patients with (n = 32; F:23; median age: 34.6 years (interquartile range [IQR]: 27.4–45.5)) and without (n = 30; F:22; median age: 36.6 years [IQR: 31.6–47.1]) CNP. The value of a central focus between T1–T6 in relation to CNP demonstrated a sensitivity of 96.9% (95% confidence interval [CI]: 83.8–99.9) and specificity of 83.3% (95% CI: 65.3–94.4). A significant relationship between CNP and a centrally located focus within the thoracic spine was also observed (odds ratio [OR]: 155.0 [95% CI lower limit: 16.0]; P < 0.0001, two-tailed Fisher exact test). In all animal models, neurons with bilateral descending projections to the lumbosacral superficial dorsal horn were concentrated in the autonomic intermediomedial nucleus surrounding the mid-thoracic central canal.InterpretationOur observations provide the first evidence for the etiology of CNP. These data may assist with the development of refined symptomatic therapies and allow for insights into unique pain syndromes observed in other demyelinating subtypes.
    08/2014; 1(8). DOI:10.1002/acn3.85