Article

PNUTS forms a trimeric protein complex with GABA(C) receptors and protein phosphatase 1.

Institut für Biochemie (Emil-Fischer-Zentrum), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Molecular and Cellular Neuroscience (Impact Factor: 3.84). 05/2008; 37(4):808-19. DOI: 10.1016/j.mcn.2008.01.004
Source: PubMed

ABSTRACT Phosphorylation and dephosphorylation of neurotransmitter receptors represent an important mechanism to regulate synaptic signal transduction. Here, we identified PNUTS, a targeting subunit of protein phosphatase 1 (PP1) as a new binding partner of GABA(C) receptors. In the mammalian retina, PNUTS is co-expressed with GABA(C) receptors and PP1 in bipolar cells. PNUTS and PP1 were detected in membrane protein preparations of the retina and precipitate with GABA(C) receptor specific antibodies. Furthermore, PNUTS shuttles from the nucleus to the membrane in cells co-expressing GABA(C) receptors. We show simultaneous binding of PP1 and GABA(C) receptors to different domains of PNUTS, demonstrating that PNUTS cross-links PP1 and GABA(C) receptors. Finally, modeling studies showed that the PP1 docking motif of PNUTS fits into the binding pocket on the enzyme surface, despite a C-terminal adjacent proline. We suggest that PNUTS targets PP1 to synaptic sites, acting as a temporary bridge between the phosphatase and GABA(C) receptors.

0 Bookmarks
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scaffold proteins contain multiple protein-protein interaction modules that physically assemble functionally related proteins into larger complexes. ZIPs [PKC (protein kinase C) ζ-interacting proteins] link the enzymatic activity of the atypical PKC isoforms PKCλ/ι or PKCζ to target proteins and are associated with neurodegenerative disorders. In the rat, alternative splicing generates three ZIP variants. Previously, we identified the ZIP3 transcript, containing 13 C-terminal amino acids encoded by intron 4, in the rat CNS (central nervous system). In the present study, we identified intronic polyadenylation signals in rat and human ZIP genes [known as SQSTM1 (sequestosome-1) in humans] and detected the corresponding ZIP3-like transcripts. In addition, we generated ZIP3-specific immune sera and observed expression of the protein in the brain and retina of the adult rat. In the retina, ZIP3 is present in nuclear layers where it co-localizes with PKCζ. An immune serum recognizing all three ZIP isoforms labelled the same cells as the newly generated ZIP3-specific antibodies and, in addition, stained both synaptic layers of the retina. There, ZIPs are localized in axon terminals of rod bipolar cells that also contain ZIP-interacting PKCζ and GABA(C) (γ-aminobutyric acid type C) receptors. In summary, we detected ZIP3-like transcripts in rat- and human-derived samples and describe the expression of ZIP3 in the rat CNS.
    Biochemical Journal 10/2010; 433(1):43-50. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein Ser/Thr phosphatase-1 (PP1) catalyzes the majority of eukaryotic protein dephosphorylation reactions in a highly regulated and selective manner. Recent studies have identified an unusually diversified PP1 interactome with the properties of a regulatory toolkit. PP1-interacting proteins (PIPs) function as targeting subunits, substrates and/or inhibitors. As targeting subunits, PIPs contribute to substrate selection by bringing PP1 into the vicinity of specific substrates and by modulating substrate specificity via additional substrate docking sites or blocking substrate-binding channels. Many of the nearly 200 established mammalian PIPs are predicted to be intrinsically disordered, a property that facilitates their binding to a large surface area of PP1 via multiple docking motifs. These novel insights offer perspectives for the therapeutic targeting of PP1 by interfering with the binding of PIPs or substrates.
    Trends in Biochemical Sciences 08/2010; 35(8):450-8. · 13.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Male germ cells with aberrant DNA damage are the weighted factor contributing to male infertility. Mounting evidence shows that DNA damage in male germ cells impairs spermatogenesis and lowers fecundity. MicroRNAs (miRNAs) regulating expression of multiple genes play a significant role in spermatogenesis. Our previous results have shown that microRNA-383 (miR-383) is one of the notable down-regulated microRNAs in the testes of sterile males with maturation arrest (MA) and is located predominantly in spermatogonia and primary spermatocytes. However, the role that miR-383 plays in DNA damage during spermatogenesis remains unknown. In this study, we found that miR-383 inhibited the focal formation and abundance of γH2AX, which is the major marker of sites of DNA damage, with or without ultraviolet irradiation and cisplatin in testicular embryonal carcinoma (NT-2) cells. In addition, NT-2 cells were remarkably sensitized to DNA damage reagent (cisplatin) by forcing expression of miR-383 and silencing expression of protein phosphatase 1, regulatory subunit 10 (PNUTS). By constructing Renilla luciferase reporters and co-transfecting miR-383 and reporters in NT-2 cells, we identified that PNUTS was a valid target of miR-383. Further results demonstrated that the repression of the phosphorylated form of H2AX by miR-383 was due to independent depletion of PNUTS and cell cycle arrest. In conclusion, we found a novel function of miR-383 in the DNA damage pathway. miR-383 impairs the phosphorylation of H2AX by targeting PNUTS and inducing cell cycle arrest independently, as well as sensitizing NT-2 cells to cisplatin.
    Cellular Signalling 01/2014; · 4.47 Impact Factor