Cyclin D1 expression analysis in familial breast cancers may discriminate BRCAX from BRCA2-linked cases

Unit of Genetic Susceptibility to Cancer, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy.
Modern Pathology (Impact Factor: 6.36). 04/2008; 21(10):1262-70. DOI: 10.1038/modpathol.2008.43
Source: PubMed

ABSTRACT Most familial breast cancers arise in patients who tested negative for germline mutations in BRCA1 and BRCA2 genes (also referred to as BRCAX cases). Several studies aimed to define histopathological and molecular profiles characteristic of BRCA1, BRCA2 and BRCAX tumors have been performed. Major pathological and immunohistochemical differences have been reported in BRCA1 cancers compared to the other two groups, whereas less difference has been observed between BRCA2 and BRCAX cases. The aim of this study was to investigate the ability of selected tumor markers to discriminate BRCAX breast cancers from cancers arising in carriers of mutations in BRCA genes, and their usefulness in selecting familial cases in whom testing for such mutations is more likely to result uninformative. We carried out a morphological and immunohistochemical analysis on 22 BRCA1, 16 BRCA2 and 33 BRCAX familial breast cancers. Age at first diagnosis, histological type and grade, and immunostaining for estrogen receptor (ER), progesterone receptor (PR), p53, HER2/Neu, E-cadherin and cyclin D1 were investigated. The occurrence of somatic mutations of the TP53 gene was also verified. BRCA1 tumors resulted clearly distinguishable from BRCAX cases, occurring at a younger age, being more frequently of higher grade, negative for ER, PR and cyclin D1 expression and positive for p53 alterations. The predictive value of age at diagnosis, histological grade and PR expression was confirmed in a multivariable analysis. When comparing BRCA2 with BRCAX tumors, the only parameter that differed was cyclin D1, which was significantly overexpressed in BRCA2 cases both in the univariable and the multivariable analyses. If confirmed by further studies, our observations indicate that the investigation of cyclin D1 expression in familial breast cancer cases could be used, in conjunction with the analysis of other tumor markers preferentially associated with BRCA1 or BRCA2 tumors, to prioritize hereditary cases for mutation testing in BRCA genes.

Download full-text


Available from: Marco Pierotti, Nov 22, 2014
1 Follower
  • Source
    • "ER negativity is typical of tumors from BRCA1 mutation carriers. Although the rate of cyclin D1 positive cases is lower in BRCA1 tumors than in sporadic tumors, they still represent some 5 to 33% of all positive cases [7] [20] [24] [25] [36]. The aforementioned alternative pathways of cyclin D1 overexpression induction may be involved in these positive cases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Breast cancer associated with BRCA1 and BRCA2 gene mutations differs from non-BRCA tumors in several respects. We determined whether there was any difference in CCND1 (11q13) and ZNF217 (20q13) gene amplification with respect to BRCA status. Of 40 breast cancer samples examined, 15 and 9 were from BRCA1 and BRCA2 mutation carriers, respectively, and 16 from patients without mutation. Fluorescence in situ hybridization showed that eight tumors exhibited CCND1 amplification (20%; 3 BRCA1, 3 BRCA2, 2 non-BRCA). ZNF217 amplification was observed in three of 38 cases (8%; 2 BRCA1, 1 non-BRCA). There was no significant difference in CCND1 and ZNF217 amplification between BRCA1, BRCA2 and non-BRCA tumors. CCND1 amplification was associated with decreased disease-free (P = 0.045) and overall survival (P = 0.015). BRCA1 tumors with CCND1 amplification were estrogen receptor negative, in contrast to CCND1 amplified BRCA2 and non-BRCA tumors, suggesting that concurrent CCND1 amplification and estrogen and progesterone receptor negativity may predict germline BRCA1 gene mutation. All ZNF217 amplified tumors were of the medullary histological type (P = 0.002). There was no statistical correlation between CCND1 and ZNF217 amplification and estrogen receptor, progesterone receptor, and ERBB2 expression and TNM classification. CCND1 amplification did not correlate with EGFR expression.
    Neoplasma 01/2010; 57(4):325-32. DOI:10.4149/neo_2010_04_325 · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is important to identify a germline mutation in a patient with an inherited cancer syndrome to allow mutation carriers to be included in cancer surveillance programs, which have been proven to save lives. Many of the mutations identified result in premature termination of translation, and thus in loss-of-function of the encoded mutated protein. However, the significance of a large proportion of the sequence changes reported is unknown. Some of these variants will be associated with a high risk of cancer and have direct clinical consequence. Many criteria can be used to classify variants with unknown significance; most criteria are based on the characteristics of the amino acid change, on segregation data and appearance of the variant, on the presence of the variant in controls, or on functional assays. In inherited cancers, tumor characteristics can also be used to classify variants. It is worthwhile to examine the clinical, morphological and molecular features of a patient, and his or her family, when assessing whether the role of a variant is likely to be neutral or pathogenic. Here we describe the advantages and disadvantages of using the tumor characteristics of patients carrying germline variants of uncertain significance (VUS) in BRCA1, BRCA2, or in one of the mismatch repair (MMR) genes, MLH1, MSH2, or MSH6, to infer pathogenicity.
    Human Mutation 11/2008; 29(11):1292-303. DOI:10.1002/humu.20894 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A role of X chromosome inactivation process in the development of breast cancer have been suggested. In particular, the relationship between the breast cancer predisposing gene BRCA1 and XIST, the main mediator of X chromosome inactivation, has been intensely investigated, but still remains controversial. We investigated this topic by assessing XIST behaviour in different groups of breast carcinomas and in a panel of breast cancer cell lines both BRCA1 mutant and wild type. In addition, we evaluated the occurrence of broader defects of heterochromatin in relation to BRCA1 status in breast cancer cells. We provide evidence that in breast cancer cells BRCA1 is involved in XIST regulation on the active X chromosome, but not in its localization as previously suggested, and that XIST can be unusually expressed by an active X and can decorate it. This indicates that the detection of XIST cloud in cancer cell is not synonymous of the presence of an inactive X chromosome. Moreover, we show that global heterochromatin defects observed in breast tumor cells are independent of BRCA1 status. Our observations sheds light on a possible previously uncharacterized mechanism of breast carcinogenesis mediated by XIST misbehaviour, particularly in BRCA1-related cancers. Moreover, the significant higher levels of XIST-RNA detected in BRCA1-associated respect to sporadic basal-like cancers, opens the possibility to use XIST expression as a marker to discriminate between the two groups of tumors.
    PLoS ONE 02/2009; 4(5):e5559. DOI:10.1371/journal.pone.0005559 · 3.53 Impact Factor
Show more