Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis.

Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA.
The Plant Cell (Impact Factor: 9.58). 04/2008; 20(3):786-802. DOI: 10.1105/tpc.107.052647
Source: PubMed

ABSTRACT Nitric oxide (NO) is a key signaling molecule in plants. This analysis of Arabidopsis thaliana HOT5 (sensitive to hot temperatures), which is required for thermotolerance, uncovers a role of NO in thermotolerance and plant development. HOT5 encodes S-nitrosoglutathione reductase (GSNOR), which metabolizes the NO adduct S-nitrosoglutathione. Two hot5 missense alleles and two T-DNA insertion, protein null alleles were characterized. The missense alleles cannot acclimate to heat as dark-grown seedlings but grow normally and can heat-acclimate in the light. The null alleles cannot heat-acclimate as light-grown plants and have other phenotypes, including failure to grow on nutrient plates, increased reproductive shoots, and reduced fertility. The fertility defect of hot5 is due to both reduced stamen elongation and male and female fertilization defects. The hot5 null alleles show increased nitrate and nitroso species levels, and the heat sensitivity of both missense and null alleles is associated with increased NO species. Heat sensitivity is enhanced in wild-type and mutant plants by NO donors, and the heat sensitivity of hot5 mutants can be rescued by an NO scavenger. An NO-overproducing mutant is also defective in thermotolerance. Together, our results expand the importance of GSNOR-regulated NO homeostasis to abiotic stress and plant development.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.
    Nature Communications 11/2014; 5:5401. DOI:10.1038/ncomms6401 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phytohormone abscisic acid (ABA) plays important roles in plant development and adaptation to environmental stress. ABA induces the production of nitric oxide (NO) in guard cells, but how NO regulates ABA signaling is not understood. Here, we show that NO negatively regulates ABA signaling in guard cells by inhibiting open stomata 1 (OST1)/sucrose nonfermenting 1 (SNF1)-related protein kinase 2.6 (SnRK2.6) through S-nitrosylation. We found that SnRK2.6 is S-nitrosylated at cysteine 137, a residue adjacent to the kinase catalytic site. Dysfunction in the S-nitrosoglutathione (GSNO) reductase (GSNOR) gene in the gsnor1-3 mutant causes NO overaccumulation in guard cells, constitutive S-nitrosylation of SnRK2.6, and impairment of ABA-induced stomatal closure. Intro-duction of the Cys137 to Ser mutated SnRK2.6 into the gsnor1-3/ ost1-3 double-mutant partially suppressed the effect of gsnor1-3 on ABA-induced stomatal closure. A cysteine residue correspond-ing to Cys137 of SnRK2.6 is present in several yeast and human protein kinases and can be S-nitrosylated, suggesting that the S-nitrosylation may be an evolutionarily conserved mechanism for protein kinase regulation. NO | ABA | drought | GSNOR | stomata
    Proceedings of the National Academy of Sciences 12/2014; 112(2). DOI:10.1073/pnas.1423481112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) was identified as a key player in plant defence responses approximately 20 years ago and a large body of evidence has accumulated since then supporting its role as a signalling molecule. However, there are many discrepancies in current NO detection assays and the enzymatic pathways responsible for its synthesis have yet to be determined. This has provoked strong debates concerning the function of NO in plants, even questioning its existence in planta. Here we gather data obtained using the model pathosystem Arabidopsis/Pseudomonas, which confirms the production of NO during the hypersensitive response and supports is role as a trigger of hypersensitive cell death and a mediator of defence gene expression. Finally, we discuss potential sources of NO synthesis, focusing on the role of nitrite as major substrate for NO production during incompatible interactions.
    Nitric Oxide 07/2014; DOI:10.1016/j.niox.2014.06.008 · 3.18 Impact Factor

Full-text (2 Sources)

Available from
Jun 6, 2014