Article

Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats.

Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 06/2008; 294(5):H2121-8. DOI: 10.1152/ajpheart.00012.2008
Source: PubMed

ABSTRACT Mitochondrial biogenesis is involved in the control of cell metabolism, signal transduction, and regulation of mitochondrial reactive oxygen species (ROS) production. Despite the central role of mitochondria in cellular aging and endothelial physiology, there are no studies extant investigating age-related alterations in mitochondrial biogenesis in blood vessels. Electronmicroscopy and confocal microscopy (en face Mitotracker staining) revealed that in aortas of F344 rats, a decline in mitochondrial biogenesis occurs with aging. In aged vessels, the expression of the mitochondrial biogenesis factors (including mitochondrial transcription factor A and peroxisome proliferator-activated receptor-gamma coactivator-1) was decreased. The vascular expression of complex I, III, and IV significantly declined with age, whereas aging did not alter the expression of complex II and V. Cytochrome c oxidase (COX) expression/activity exhibited the greatest age-related decline, which was associated with increased mitochondrial ROS production in the aged vessels. In cultured coronary arterial endothelial cells, a partial knockdown of COX significantly increased mitochondrial ROS production. In conclusion, vascular aging is characterized by a decline in mitochondrial mass in the endothelial cells and an altered expression of components of the mitochondrial electron transport chain likely due to a dysregulation of mitochondrial biogenesis factors. We posit that impaired mitochondrial biogenesis and downregulation of COX may contribute to the increased mitochondrial oxidative stress in aged endothelial cells.

1 Bookmark
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral artery disease (PAD), a manifestation of systemic atherosclerosis that produces blockages in the arteries supplying the legs, affects approximately 5% of Americans. We have previously, demonstrated that a myopathy characterized by myofiber oxidative damage and degeneration is central to PAD pathophysiology.
    Redox Biology. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resveratrol, a polyphenol found in a number of plant-based foods such as red wine, has received a great deal of attention for its diverse array of healthful effects. Beneficial effects of resveratrol are diverse; they include improvement of mitochondrial function, protection against obesity and obesity-related diseases such as type-2 diabetes, suppression of inflammation and cancer cell growth and protection against cardiovascular dysfunction, just to name a few. Investigations into the metabolic effects of resveratrol are furthest along and now include a number of clinical trials, which have yielded mixed results. There are a number of controversies surrounding resveratrol that have not been resolved. Here, we will review these controversies with particular emphasis on its mechanism of metabolic action and how lessons from resveratrol may help develop therapies that harness the effects of resveratrol but without the undesirable properties of resveratrol.
    Cellular and Molecular Life Sciences CMLS 12/2014; · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Given that the effects of ultrafine fractions (<0.1 ¿m) on ischemic heart diseases (IHD) and other cardiovascular diseases are gaining attention, this study is aimed to explore the influence of silica nanoparticles (SiNPs)-induced autophagy on endothelial cell homeostasis and angiogenesis.Methods and resultsUltrastructural changes of autophagy were observed in both vascular endothelial cells and pericytes in the heart of ICR mice by TEM. Autophagic activity and impaired angiogenesis were further confirmed by the immunohistochemistry staining of LC3 and VEGFR2. In addition, the immunohistochemistry results showed that SiNPs had an inhibitory effect on ICAM-1 and VCAM-1, but no obvious effect on E-selectin in vivo. The disruption of F-actin cytoskeleton occurred as an initial event in SiNPs-treated endothelial cells. The depolarized mitochondria, autophagic vacuole accumulation, LC3-I/LC3-II conversion, and the down-regulation of cellular adhesion molecule expression were all involved in the disruption of endothelial cell homeostasis in vitro. Western blot analysis indicated that the VEGFR2/PI3K/Akt/mTOR and VEGFR2/MAPK/Erk1/2/mTOR signaling pathway was involved in the cardiovascular toxicity triggered by SiNPs. Moreover, there was a crosstalk between the VEGFR2-mediated autophagy signaling and angiogenesis signaling pathways.Conclusions In summary, the results demonstrate that SiNPs induce autophagic activity in endothelial cells and pericytes, subsequently disturb the endothelial cell homeostasis and impair angiogenesis. The VEGFR2-mediated autophagy pathway may play a critical role in maintaining endothelium and vascular homeostasis. Our findings may provide experimental evidence and explanation for cardiovascular diseases triggered by nano-sized particles.
    Particle and Fibre Toxicology 09/2014; 11(1):50. · 6.99 Impact Factor