Article

Analysis of the gliding pattern of the canine flexor digitorum profundus tendon through the A2 pulley

Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Journal of Biomechanics (Impact Factor: 2.66). 02/2008; 41(6):1281-8. DOI: 10.1016/j.jbiomech.2008.01.011
Source: PubMed

ABSTRACT Friction between a tendon and its pulley was first quantified using the concept of the arc of contact. Studies of human tendons conformed closely to a theoretical nylon cable/nylon rod model. However, we observed differences in measured friction that depended on the direction of motion in the canine model. We hypothesized that fibrocartilaginous nodules in the tendon affected the measurements and attempted to develop a theoretical model to explain the observations we made. Two force transducers were connected to each end of the canine flexor digitorum profundus tendon and the forces were recorded when it was moved through the A2 pulley toward a direction of flexion by an actuator and then reversed a direction toward extension. The changes of a force as a function of tendon excursion were evaluated in 20 canine paws. A bead cable/rod model was developed to simulate the canine tendon-pulley complex. To interpret the results, a free-body diagram was developed. The two prominent fibrocartilaginous nodules in the tendon were found to be responsible for deviation from a theoretical nylon cable gliding around the rod model, in a fashion analogous to the effect of the patella on the quadriceps mechanism. A bead cable/rod model qualitatively reproduced the findings observed in the canine tendon-pulley complex. Frictional coefficient of the canine flexor tendon-pulley was 0.016+/-0.005. After accounting for the effect created by the geometry of two fibrocartilaginous nodules within the tendon, calculation of frictional force in the canine tendon was possible.

0 Bookmarks
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Friction studies in biological systems are reviewed, including synovial joints (cartilage, meniscus), eye, pleurae, fat pad, skin, and oral cavity as well as daily activities associated with shaving, brushing, slip, etc. Both natural systems and medical interventions in terms of diagnoses and artificial replacements are considered. Important relevant biomechanical, physiological, and anatomical factors are reviewed in conjunction with friction studies in terms of both methodologies and friction coefficients. Important underlying tribological mechanisms related to friction are briefly discussed. A unified view on the lubrication mechanism responsible for the low friction in most soft biological tissues is presented.
    06/2013; 1(2). DOI:10.1007/s40544-013-0004-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carpal tunnel syndrome (CTS) is the most commonly diagnosed disabling condition of the upper extremities. It is the most commonly known and prevalent type of peripheral entrapment neuropathy that accounts for about 90% of all entrapment neuropathies. This review aims to provide an outline of CTS by considering anatomy, pathophysiology, clinical manifestation, diagnostic modalities and management of this common condition, with an emphasis on the diagnostic imaging evaluation.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The smooth gliding of the normal human digital flexor is maintained by synovial fluid lubrication and lubricants bound to the tendon surface. This system can be disrupted by degenerative conditions such as trigger finger, or by trauma. The resistance to tendon gliding after surgical repair of the lacerated digital flexor tendon relates to location of suture knots, exposure of suture materials, and type of surgical repair and materials. Restoration of a functioning gliding surface after injury can be helped by using low-friction, high-strength suture designs, therapy that enables gliding, and the addition of lubricants to the tendon surface.
    Hand clinics 05/2013; 29(2):159-66. DOI:10.1016/j.hcl.2013.02.001 · 0.69 Impact Factor

Full-text (2 Sources)

Download
14 Downloads
Available from
May 26, 2014