The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151.

Department of Cell Biology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
Cancer cell (Impact Factor: 25.29). 04/2008; 13(3):221-34. DOI: 10.1016/j.ccr.2008.01.031
Source: PubMed

ABSTRACT In vivo tumor cell migration through integrin-dependent pathways is key to the metastatic behavior of malignant cells. Using quantitative in vivo assays and intravital imaging, we assessed the impact of cell migration, regulated by the integrin-associated tetraspanin CD151, on spontaneous human tumor cell metastasis. We demonstrate that promoting immobility through a CD151-specific metastasis blocking mAb prevents tumor cell dissemination by inhibiting intravasation without affecting primary tumor growth, tumor cell arrest, extravasation, or growth at the secondary site. In vivo, this loss of migration is the result of enhanced tumor cell-matrix interactions, promoted by CD151, which prevent dissociation by individual cells and leads to a subsequent inhibition of invasion and intravasation at the site of the primary tumor.

  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been reported that miR-19a was up-regulated in gastric cancer (GC), playing an oncogenic role. However, the underlying mechanism is still unknown. Therefore, in our present study, we investigated the role of miR-19a in gastric tissues as well as 2 GC cell lines. In vivo in clinical tissue level, we have detected basal expression level of miR-19a using real-time reversal transcriptional PCR (RT-PCR); in addition, the relevance between expression of miR-19a and clinic-pathological information was also analyzed. In vitro in cell line level, miR-19a was ectopically expressed using over expression and knock-down strategy. It was found that the overexpression of miR-19a was significantly associated with metastasis of GC and inferior overall prognosis on clinical tissue level; that promotes the proliferation, migration and invasion; and that overexpression of miR-19a can promote the epithelial-mesenchymal transition through activating PI3K/AKT pathway. Blocking the PI3K/AKT pathway could cancel the effect of miR-19a. All together, our results suggest that miR-19a could be used as a promising therapeutic target in the treatment of GC.
    International journal of clinical and experimental pathology. 01/2014; 7(10):7286-96.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor cell extravasation is a key step during cancer metastasis, yet the precise mechanisms that regulate this dynamic process are unclear. We utilized a high-resolution time-lapse intravital imaging approach to visualize the dynamics of cancer cell extravasation in vivo. During intravascular migration, cancer cells form protrusive structures identified as invadopodia by their enrichment of MT1-MMP, cortactin, Tks4, and importantly Tks5, which localizes exclusively to invadopodia. Cancer cells extend invadopodia through the endothelium into the extravascular stroma prior to their extravasation at endothelial junctions. Genetic or pharmacological inhibition of invadopodia initiation (cortactin), maturation (Tks5), or function (Tks4) resulted in an abrogation of cancer cell extravasation and metastatic colony formation in an experimental mouse lung metastasis model. This provides direct evidence of a functional role for invadopodia during cancer cell extravasation and distant metastasis and reveals an opportunity for therapeutic intervention in this clinically important process.
    Cell Reports 08/2014; 8(5). · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New therapeutic agents are needed in digestive tract tumors. Co-029/tspan8 is a tetraspanin frequently expressed on human colorectal tumors, In this work, we report the effects of the monoclonal antibody Ts29.2, targeting Co-029/tspan8, on colorectal tumor cells in vitro and after implantation in nude mice. HT29, Isreco1 and SW480 colorectal tumor cell lines were used for this study. HT29 has a strong endogenous expression of Co-029/tspan8, whereas Isreco1 cells don't express Co-029/tspan8 and SW480 has only a weak expression. Isreco1 and SW480 were transduced to express Co-029/tspan8 at the same level as HT29. In order to check the specificity of the effect of monoclonal antibody Ts29.2, low Co-029/tspan8 expressing SW480 cells were injected simultaneously with transduced cells in the back, on the left and right sides of the mice. With an early treatment, Ts29.2 mAb inhibited growth of tumors expressing Co-029/tspan8 up to 70%, whereas a delayed treatment was less efficient. No effect of the antibody on cell proliferation or apoptosis induction was detected in vitro. No increase of activated caspase 3 labeling was observed in vivo and areas occupied by vessels were not significantly different between treated mice and controls. This suggests that the action of Ts29.2 is linked neither to cellular toxicity nor to the inhibition of the previously reported angiogenic properties of Co-029/tspan8. An inhibition of cell proliferation in vivo is demonstrated by a reduction of the mitotic index in HT29 tumors of Ts29.2 treated mice. The discrepancy between in vitro and in vivo data on cell proliferation suggests that the binding of Ts29.2 to tumor cells may modify their response to signals issued from the microenvironment. Given the restricted pattern of tissue expression of the tetraspanin Co-029/tspan8, these preliminary results put forth for consideration the antibody targeting of this tetraspanin in further investigations for therapeutic applications.
    Frontiers in physiology. 01/2014; 5:364.

Full-text (2 Sources)

Available from
Jun 1, 2014