Article

An updated steroid benchmark set and its application in the discovery of novel nanomolar ligands of sex hormone-binding globulin.

Prostate Centre at the Vancouver General Hospital, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
Journal of Medicinal Chemistry (Impact Factor: 5.61). 05/2008; 51(7):2047-56. DOI: 10.1021/jm7011485
Source: PubMed

ABSTRACT A benchmark data set of steroids with known affinity for sex hormone-binding globulin (SHBG) has been widely used to validate popular molecular field-based QSAR techniques. We have expanded the data set by adding a number of nonsteroidal SHBG ligands identified both from the literature and in our previous experimental studies. This updated molecular set has been used herein to develop 4D QSAR models based on "inductive" descriptors and to gain insight into the molecular basis of protein-ligand interactions. Molecular alignment was generated by means of docking active compounds into the active site of the SHBG. Surprisingly, the alignment of the benchmark steroids contradicted the classical ligand-based alignment utilized in previous CoMFA and CoMSIA models yet afforded models with higher statistical significance and predictive power. The resulting QSAR models combined with CoMFA and CoMSiA models as well as structure-based virtual screening allowed discovering several low-micromolar to nanomolar nonsteroidal inhibitors for human SHBG.

0 Bookmarks
 · 
34 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM database is based on the wiki principle and focuses primarily on the quality and verifiability of the data. The database is tightly integrated with the modeling framework, which supports all the steps required to create a predictive model: data search, calculation and selection of a vast variety of molecular descriptors, application of machine learning methods, validation, analysis of the model and assessment of the applicability domain. As compared to other similar systems, OCHEM is not intended to re-implement the existing tools or models but rather to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community. Our intention is to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and share it with other users on the Web. The ultimate goal of OCHEM is collecting all possible chemoinformatics tools within one simple, reliable and user-friendly resource. The OCHEM is free for web users and it is available online at http://www.ochem.eu.
    Journal of Computer-Aided Molecular Design 06/2011; 25(6):533-54. · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Online Chemical Modeling Environment (OCHEM, http://ochem.eu) is a web-based platform that provides tools for automation of typical steps necessary to create a predictive QSAR/QSPR model. The platform consists of two major subsystems: a database of experimental measurements and a modeling framework. So far, OCHEM has been limited to the processing of individual compounds. In this work, we extended OCHEM with a new ability to store and model properties of binary non-additive mixtures. The developed system is publicly accessible, meaning that any user on the Web can store new data for binary mixtures and develop models to predict their non-additive properties.The database already contains almost 10,000 data points for the density, bubble point, and azeotropic behavior of binary mixtures. For these data, we developed models for both qualitative (azeotrope/zeotrope) and quantitative endpoints (density and bubble points) using different learning methods and specially developed descriptors for mixtures. The prediction performance of the models was similar to or more accurate than results reported in previous studies. Thus, we have developed and made publicly available a powerful system for modeling mixtures of chemical compounds on the Web.
    Journal of Cheminformatics 01/2013; 5(1):4. · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The importance of reliable methods for representative sub-sampling in terms of experimental design and risk assessment within the European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) system is crucial. We developed experimental design approaches, by utilising predicted properties and the 'distance to model' parameter, to estimate the benefits of certain compounds to the quality of a resulting model. A statistical evaluation of four regression data sets and one classification data set showed that the adaptive concept of iteratively refining the representation of the chemical space contributes to a more efficient and more reliable selection in comparison to traditional approaches. The evaluation of compounds with regard to the uncertainty and the correlation of prediction is beneficial, and in particular, for regression data sets of sufficient size, whereas the use of predicted properties to define the chemical space is beneficial for classification models.
    Alternatives to laboratory animals: ATLA 03/2013; 41(1):33-47. · 1.37 Impact Factor