Article

Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters.

Graduate Program in Neurosciences and Department of Pharmacology and Howard Hughes Medical Institute, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2008; 105(11):4411-6. DOI: 10.1073/pnas.0712008105
Source: PubMed

ABSTRACT Genetically encoded sensors of glutamate concentration are based on FRET between cyan and yellow fluorescent proteins bracketing a bacterial glutamate-binding protein. Such sensors have yet to find quantitative applications in neurons, because of poor response amplitude in physiological buffers or when expressed on the neuronal cell surface. We have improved our glutamate-sensing fluorescent reporter (GluSnFR) by systematic optimization of linker sequences and glutamate affinities. Using SuperGluSnFR, which exhibits a 6.2-fold increase in response magnitude over the original GluSnFR, we demonstrate quantitative optical measurements of the time course of synaptic glutamate release, spillover, and reuptake in cultured hippocampal neurons with centisecond temporal and spine-sized spatial resolution. During burst firing, functionally significant spillover persists for hundreds of milliseconds. These glutamate levels appear sufficient to prime NMDA receptors, potentially affecting dendritic spike initiation and computation. Stimulation frequency-dependent modulation of spillover suggests a mechanism for nonsynaptic neuronal communication.

Full-text

Available from: Yongling Zhu, Jan 17, 2014
0 Followers
 · 
68 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major challenge in neuroscience is to decipher the logic of neural circuitry and to link it to learning, memory, and behavior. Synaptic transmission is a critical event underlying information processing within neural circuitry. In the extracellular space, the concentrations and distributions of excitatory, inhibitory, and modulatory neurotransmitters impact signal integration, which in turn shapes and refines the function of neural networks. Thus, the determination of the spatiotemporal relationships between these chemical signals with synaptic resolution in the intact brain is essential to decipher the codes for transferring information across circuitry and systems. Here, we review approaches and probes that have been employed to determine the spatial and temporal extent of neurotransmitter dynamics in the brain. We specifically focus on the design, screening, characterization, and application of genetically encoded indicators directly probing glutamate, the most abundant excitatory neurotransmitter. These indicators provide synaptic resolution of glutamate dynamics with cell-type specificity. We also discuss strategies for developing a suite of genetically encoded probes for a variety of neurotransmitters and neuromodulators.
    ACS Chemical Neuroscience 01/2015; 6(1). DOI:10.1021/cn500280k · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BackgroundActivation of G protein coupled receptor (GPCR) in astrocytes leads to Ca2+-dependent glutamate release via Bestrophin 1 (Best1) channel. Whether receptor-mediated glutamate release from astrocytes can regulate synaptic plasticity remains to be fully understood.ResultsWe show here that Best1-mediated astrocytic glutamate activates the synaptic N-methyl-D-aspartate receptor (NMDAR) and modulates NMDAR-dependent synaptic plasticity. Our data show that activation of the protease-activated receptor 1 (PAR1) in hippocampal CA1 astrocytes elevates the glutamate concentration at Schaffer collateral-CA1 (SC-CA1) synapses, resulting in activation of GluN2A-containing NMDARs and NMDAR-dependent potentiation of synaptic responses. Furthermore, the threshold for inducing NMDAR-dependent long-term potentiation (LTP) is lowered when astrocytic glutamate release accompanied LTP induction, suggesting that astrocytic glutamate is significant in modulating synaptic plasticity.ConclusionsOur results provide direct evidence for the physiological importance of channel-mediated astrocytic glutamate in modulating neural circuit functions.
    Molecular Brain 02/2015; 8(1). DOI:10.1186/s13041-015-0097- · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent developments in genetically encoded indicators of neural activity (GINAs) have greatly advanced the field of systems neuroscience. As they are encoded by DNA, GINAs can be targeted to genetically defined cellular populations. Combined with fluorescence microscopy, most notably multi-photon imaging, GINAs allow chronic simultaneous optical recordings from large populations of neurons or glial cells in awake, behaving mammals, particularly rodents. This large-scale recording of neural activity at multiple temporal and spatial scales has greatly advanced our understanding of the dynamics of neural circuitry underlying behavior-a critical first step toward understanding the complexities of brain function, such as sensorimotor integration and learning. Here, we summarize the recent development and applications of the major classes of GINAs. In particular, we take an in-depth look at the design of available GINA families with a particular focus on genetically encoded calcium indicators (GCaMPs), sensors probing synaptic activity, and genetically encoded voltage indicators. Using the family of the GCaMP as an example, we review established sensor optimization pipelines. We also discuss practical considerations for end users of GINAs about experimental methods including approaches for gene delivery, imaging system requirements, and data analysis techniques. With the growing toolbox of GINAs and with new microscopy techniques pushing beyond their current limits, the age of light can finally achieve the goal of broad and dense sampling of neuronal activity across time and brain structures to obtain a dynamic picture of brain function.
    Frontiers in Molecular Neuroscience 12/2014; 7:97. DOI:10.3389/fnmol.2014.00097