Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania

Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
Molecular Psychiatry (Impact Factor: 15.15). 04/2008; 13(9):858-72. DOI: 10.1038/mp.2008.20
Source: PubMed

ABSTRACT The glutamate receptor 6 (GluR6 or GRIK2, one of the kainate receptors) gene resides in a genetic linkage region (6q21) associated with bipolar disorder (BPD), but its function in affective regulation is unknown. Compared with wild-type (WT) and GluR5 knockout (KO) mice, GluR6 KO mice were more active in multiple tests and super responsive to amphetamine. In a battery of specific tests, GluR6 KO mice also exhibited less anxious or more risk-taking type behavior and less despair-type manifestations, and they also had more aggressive displays. Chronic treatment with lithium, a classic antimanic mood stabilizer, reduced hyperactivity, aggressive displays and some risk-taking type behavior in GluR6 KO mice. Hippocampal and prefrontal cortical membrane levels of GluR5 and KA-2 receptors were decreased in GluR6 KO mice, and chronic lithium treatment did not affect these decreases. The membrane levels of other glutamatergic receptors were not significantly altered by GluR6 ablation or chronic lithium treatment. Together, these biochemical and behavioral results suggest a unique role for GluR6 in controlling abnormalities related to the behavioral symptoms of mania, such as hyperactivity or psychomotor agitation, aggressiveness, driven or increased goal-directed pursuits, risk taking and supersensitivity to psychostimulants. Whether GluR6 perturbation is involved in the mood elevation or thought disturbance of mania and the cyclicity of BPD are unknown. The molecular mechanism underlying the behavioral effects of lithium in GluR6 KO mice remains to be elucidated.


Available from: Brandon L Pearson, Apr 26, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is firmly believed that the mechanism of action of SSRIs in major depression is to inhibit the serotonin transporter, SERT, and increase extracellular concentration of serotonin. However, this undisputed observation does not prove that SERT inhibition is the mechanism, let alone the only mechanism, by which SSRI's exert their therapeutic effects. It has recently been demonstrated that 5-HT2B receptor stimulation is needed for the antidepressant effect of fluoxetine in vivo. The ability of all five currently used SSRIs to stimulate the 5-HT2B receptor equipotentially in cultured astrocytes has been known for several years, and increasing evidence has shown the importance of astrocytes and astrocyte-neuronal interactions for neuroplasticity and complex brain activity. This paper reviews acute and chronic effects of 5-HT2B receptor stimulation in cultured astrocytes and in astrocytes freshly isolated from brains of mice treated with fluoxetine for 14 days together with effects of anti-depressant therapy on turnover of glutamate and GABA and metabolism of glucose and glycogen. It is suggested that these events are causally related to the mechanism of action of SSRIs and of interest for development of newer antidepressant drugs.
    Frontiers in Behavioral Neuroscience 02/2015; 9:25. DOI:10.3389/fnbeh.2015.00025 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluoxetine and other serotonin-specific re-uptake inhibitors (SSRIs) are generally thought to owe their therapeutic potency to inhibition of the serotonin transporter (SERT). However, research in our laboratory showed that it affects, with relatively high affinity the 5-HT2B receptor in cultured astrocytes; this finding was confirmed by independent observations showing that fluoxetine loses its ability to elicit SSRI-like responses in behavioral assays in mice in which the 5-HT2B receptor was knocked-out genetically or inhibited pharmacologically. All clinically used SSRIs are approximately equipotent towards 5-HT2B receptors and exert their effect on cultured astrocytes at concentrations similar to those used clinically, a substantial difference from their effect on SERT. We have demonstrated up-regulation and editing of astrocytic genes for ADAR2, the kainate receptor GluK2, cPLA2 and the 5-HT2B receptor itself after chronic treatment of cultures, which do not express SERT and after treatment of mice (expressing SERT) for 2 weeks with fluoxetine, followed by isolation of astrocytic and neuronal cell fractionation. Affected genes were identical in both experimental paradigms. Fluoxetine treatment also altered Ca2+ homeostatic cascades, in a specific way that differs from that seen after treatment with the anti-bipolar drugs carbamazepine, lithium, or valproic acid. All changes occurred after a lag period similar to what is seen for fluoxetine’s clinical effects, and some of the genes were altered in the opposite direction by mild chronic inescapable stress, known to cause anhedonia, a component of major depression. In the anhedonic mice these changes were reversed by treatment with SSRIs.
    Current Neuropharmacology 07/2014; 12(4). DOI:10.2174/1570159X12666140828221720 · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously, we reported that chronic treatment with fluoxetine increased gene expression of 5-hydroxytryptamine receptor 2B (5-HT2BR), cytosolic phospholipase 2α (cPLA2α), glutamate receptor, ionotropic kainate 2 (GluK2) and adenosine deaminase acting on RNA 2 (ADAR2), in cultured astrocytes and astrocytes freshly isolated from transgenic mice tagged with an astrocyte-specific marker. In contrast, neurones isolated from transgenic mice tagged with a neurone-specific marker and exposed to fluoxetine showed an increase in gene expression of glutamate receptor, ionotropic kainate 4 (GluK4) and 5-hydroxytryptamine receptor 2C (5-HT2CR). In a mouse model of anhedonia, the downregulation of 5-HT2BR, cPLA2α, ADAR2 and GluK4 but not GluK2 and 5-HT2CR was detected. To investigate the effects of chronic mild stress (CMS) and/or fluoxetine treatment on gene expression of 5-HT2BR, 5-HT2CR, cPLA2α, ADAR2, GluK2 and GluK4 specifically in astrocytes and neurones. Transgenic mice tagged with either astrocyte- or neurone-specific markers were exposed to the CMS. Real-time PCR was applied to determine expression of messenger RNA (mRNA). We found that (i) mRNAs of the 5-HT2BR and cPLA2α in astrocytes and GluK4 in neurones were significantly reduced in mice that became anhedonic; the mRNA levels were restored by fluoxetine treatment; (ii) ADAR2 in astrocytes was decreased by the CMS but showed no response to fluoxetine in anhedonic animals; (iii) neither GluK2 expression in astrocytes nor 5-HT2CR expression in neurones were affected in anhedonic animals, although expression of 5-HT2CR mRNA was upregulated by fluoxetine. Our results indicate that the effects of chronic treatment with fluoxetine are not only dependent on the cell type studied but also on the development of anhedonia. This suggests that fluoxetine may affect major depression (MD) patients and healthy people in a different manner.
    Psychopharmacology 04/2015; DOI:10.1007/s00213-015-3921-2 · 3.99 Impact Factor