Significant diversity and potential problems associated with inferring population structure within the Cenococcum geophilum species complex

Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA.
Mycologia (Impact Factor: 2.13). 11/2007; 99(6):812-9. DOI: 10.3852/mycologia.99.6.812
Source: PubMed

ABSTRACT Cenococcum geophilum is perhaps the most widely distributed and most recognized ectomycorrhizal fungus with a host range of more than 200 tree species from 40 genera of both angiosperms and gymnosperms. We conducted a phylogenetic analysis on a large collection of isolates (n=74) from North America and Europe based on glyceraldehyde 3-phosphate dehydrogenase (gpd). A subset of isolates (n=22) also was analyzed with the more conservative LSU-rDNA locus. Significant nucleotide diversity was detected (approximately 20%) in the gpd region and the LSU-rDNA analysis supported that the C. geophilum isolates studied were monophyletic but distinct from two isolates, Am5-1 and N2-10, which previously were used in population genetic studies of this species. These results suggest that Am5-1 and N2-10 are likely two undescribed species or even genera. Our results suggest that C. geophilum sensu lato is a species complex and support previous molecular, physiological and morphological studies that have shown significant diversity in C. geophilum. This study also revealed that caution is advised when conducting population genetic studies in C. geophilum due to the possibility of pooling unrelated isolates. This potential problem also has implications for other fungal taxa because cryptic species routinely have been found in recent years based on molecular data.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biogeographical patterns and large-scale genetic structure have been little studied in ectomycorrhizal (EM) fungi, despite the ecological and economic importance of EM symbioses. We coupled population genetics and phylogenetic approaches to understand spatial structure in fungal populations on a continental scale. Using nine microsatellite markers, we characterized gene flow among 16 populations of the widespread EM basidiomycete Laccaria amethystina over Europe (i.e. over 2900 km). We also widened our scope to two additional populations from Japan (10(4) km away) and compared them with European populations through microsatellite markers and multilocus phylogenies, using three nuclear genes (NAR, G6PD and ribosomal DNA) and two mitochondrial ribosomal genes. European L. amethystina populations displayed limited differentiation (average F(ST) = 0.041) and very weak isolation by distance (IBD). This panmictic European pattern may result from effective aerial dispersal of spores, high genetic diversity in populations and mutualistic interactions with multiple hosts that all facilitate migration. The multilocus phylogeny based on nuclear genes confirmed that Japanese and European specimens were closely related but clustered on a geographical basis. By using microsatellite markers, we found that Japanese populations were strongly differentiated from the European populations (F(ST) = 0.416), more than expected by extrapolating the European pattern of IBD. Population structure analyses clearly separated the populations into two clusters, i.e. European and Japanese clusters. We discuss the possibility of IBD in a continuous population (considering some evidence for a ring species over the Northern Hemisphere) vs. an allopatric speciation over Eurasia, making L. amethystina a promising model of intercontinental species for future studies.
    Molecular Ecology 12/2011; 21(2):281-99. DOI:10.1111/j.1365-294X.2011.05392.x · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spatial analysis was used to explore the distribution of individual species in an ectomycorrhizal (ECM) fungal community to address: whether mycorrhizas of individual ECM fungal species were patchily distributed, and at what scale; and what the causes of this patchiness might be. Ectomycorrhizas were extracted from spatially explicit samples of the surface organic horizons of a pine plantation. The number of mycorrhizas of each ECM fungal species was recorded using morphotyping combined with internal transcribed spacer (ITS) sequencing. Semivariograms, kriging and cluster analyses were used to determine both the extent and scale of spatial autocorrelation in species abundances, potential interactions between species, and change over time. The mycorrhizas of some, but not all, ECM fungal species were patchily distributed and the size of patches differed between species. The relative abundance of individual ECM fungal species and the position of patches of ectomycorrhizas changed between years. Spatial and temporal analysis revealed a dynamic ECM fungal community with many interspecific interactions taking place, despite the homogeneity of the host community. The spatial pattern of mycorrhizas was influenced by the underlying distribution of fine roots, but local root density was in turn influenced by the presence of specific fungal species.
    New Phytologist 02/2010; 186(3):755-68. DOI:10.1111/j.1469-8137.2010.03204.x · 6.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Assemblages of fungi associated with roots of cooccurring Epacris pulchella (Ericaceae) and Leptospermum polygalifolium (Myrtaceae) seedlings at a sclerophyll forest site in New South Wales, Australia, were investigated by direct DNA extraction and analysis of rRNA gene internal transcribed spacer (ITS) products by denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism (T-RFLP) analyses. While ordination of the DGGE data suggested that the assemblages did not differ significantly between the two plant taxa, T-RFLP data provided marginal statistical support for the presence of different assemblages. Fungi isolated from roots of both plants were identified by ITS sequence comparisons largely as ascomycetes, several of which had close sequence identity to Helotiales ericoid mycorrhizal (ERM) fungi. One isolate morphotype from E. pulchella had close sequence similarity to ectomycorrhizal fungi in the Cenococcum geophilum complex, and neighbour-joining analysis grouped this strongly with other Australian C. geophilum-like sequences. Distribution of genotypes of an ERM Helotiales ascomycete in root systems of the two plant taxa was also investigated using inter-simple sequence repeat (ISSR)-PCR. Nineteen ISSR genotypes were identified, two of which were present in roots of both plant taxa. The results are discussed in the context of potential mycelial connections between Ericaceae and non-Ericaceae plants.
    FEMS Microbiology Ecology 04/2009; 67(3):411-20. DOI:10.1111/j.1574-6941.2008.00637.x · 3.88 Impact Factor