Compound Cytotoxicity Profiling Using Quantitative High-Throughput Screening

NIH Chemical Genomics Center, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-3370, USA.
Environmental Health Perspectives (Impact Factor: 7.98). 04/2008; 116(3):284-91. DOI: 10.1289/ehp.10727
Source: PubMed


The propensity of compounds to produce adverse health effects in humans is generally evaluated using animal-based test methods. Such methods can be relatively expensive, low-throughput, and associated with pain suffered by the treated animals. In addition, differences in species biology may confound extrapolation to human health effects.
The National Toxicology Program and the National Institutes of Health Chemical Genomics Center are collaborating to identify a battery of cell-based screens to prioritize compounds for further toxicologic evaluation.
A collection of 1,408 compounds previously tested in one or more traditional toxicologic assays were profiled for cytotoxicity using quantitative high-throughput screening (qHTS) in 13 human and rodent cell types derived from six common targets of xenobiotic toxicity (liver, blood, kidney, nerve, lung, skin). Selected cytotoxicants were further tested to define response kinetics.
qHTS of these compounds produced robust and reproducible results, which allowed cross-compound, cross-cell type, and cross-species comparisons. Some compounds were cytotoxic to all cell types at similar concentrations, whereas others exhibited species- or cell type-specific cytotoxicity. Closely related cell types and analogous cell types in human and rodent frequently showed different patterns of cytotoxicity. Some compounds inducing similar levels of cytotoxicity showed distinct time dependence in kinetic studies, consistent with known mechanisms of toxicity.
The generation of high-quality cytotoxicity data on this large library of known compounds using qHTS demonstrates the potential of this methodology to profile a much broader array of assays and compounds, which, in aggregate, may be valuable for prioritizing compounds for further toxicologic evaluation, identifying compounds with particular mechanisms of action, and potentially predicting in vivo biological response.

Download full-text


Available from: Raymond R Tice,
  • Source
    • "In general, cell quantification and viability measurement data generated with the xCELLigence system correlates well with those from the MTT assay (Xing et al., 2005). Normally exposure to a chemical induces a drop in the xCELLigence-determined CI (Xia et al., 2008). However, in this study Polydadmac induced a distinct and unexpected increase in CI, suggesting that the polymer deposited non-adherent primary cells in a monolayer configuration and thereby increased the impedance or contributed to tighter adhesion between cultured cells leading to increased CI. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To speed up sedimentation of suspended solids the mining industry often uses flocculent chemicals. In this work we evaluated the cytotoxic and mechanistic effects of Polydadmac, and its basic component Dadmac, on fish cells. Dose-response effects, temperature-dependent effects and impact of Dadmac and Polydadmac on Cu toxicity were studied in Atlantic salmon hepatocytes. We used the xCELLigence system and the MTT test for cytotoxicity assessments, and real-time RT-qPCR to evaluate molecular effects. The results showed a cytotoxic response for Polydadmac but not for Dadmac. Elevated levels of Cu were cytotoxic. Moderately cytotoxic concentrations of Cu (100-1000μM) induced significant responses on the transcription of a number of genes in the cells, i.e. cuznsod (sod1), cat, mnsod (sod2), nfe2l2, hmox1, mta, casp3b, casp6, bclx, cyp1a, ccs, atp7a, app, mmp13, esr1, ppara, fads2 and ptgs2. A factorial PLS regression model for mnsod transcription showed a synergistic effect between Dadmac and Cu exposure in the cells, indicating an interaction effect between Dadmac and Cu on mitochondrial ROS scavenging. No interaction effects were seen for Polydadmac on Cu toxicity. In conclusion, Polydadmac is cytotoxic at elevated concentrations but appears to have low ability to interfere with Cu toxicity in Atlantic salmon liver cells.
    Toxicology in Vitro 09/2015; DOI:10.1016/j.tiv.2015.09.012 · 2.90 Impact Factor
  • Source
    • "For example, the sets of genes that control forebrain expansion and regulate human cell fate are largely absent in rodents. Also, fibroblast growth factor (FGF) has different effects on myelination in humans and rodents (Hu et al., 2009), and compounds that are toxic to rodent cells may have no effect on human cells or vice versa (Malik et al., 2014; Xia et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cells (iPSC) and their differentiated derivatives offer a unique source of human primary cells for toxicity screens. Here, we report on the comparative cytotoxicity of 80 compounds (neurotoxicants, developmental neurotoxicants, environmental compounds) in iPSC as well as isogenic iPSC-derived neural stem cells (NSC), neurons, and astrocytes. All compounds were tested over a 24-hour period at 10 and 100μM, in duplicate, with cytotoxicity measured using the MTT assay. Of the 80 compounds tested, 50 induced significant cytotoxicity in at least one cell type; per cell type, 32, 38, 46, and 41 induced significant cytotoxicity in iPSC, NSC, neurons, and astrocytes, respectively. Four compounds (valinomycin, 3,3',5,5'-tetrabromobisphenol, deltamethrin, triphenyl phosphate) were cytotoxic in all four cell types. Retesting these compounds at 1, 10, and 100μM using the same exposure protocol yielded consistent results as compared with the primary screen. Using rotenone, we extended the testing to seven additional iPSC lines of both genders; no substantial difference in the extent of cytotoxicity was detected among the cell lines. Finally, the cytotoxicity assay was simplified by measuring luciferase activity using lineage-specific luciferase reporter iPSC lines which were generated from the parental iPSC line. Copyright © 2015. Published by Elsevier B.V.
    Brain research 08/2015; DOI:10.1016/j.brainres.2015.07.048 · 2.84 Impact Factor
  • Source
    • "We miniaturized and optimized the GH3.TRE-Luc assay into a 1536-wells plate format for assaying potential agonistic, antagonistic and cytotoxic activities of the compounds tested. We used the optimized qHTS system to test the 1280 compounds of the LOPAC library (Library of Pharmacologically Active Compounds) [26] and the 1408 chemicals from the National Toxicology Program collection (NTP) [27]. To insure that observed effects were not due to cytotoxicity, we measured intracellular ATP content as a cell viability readout. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To adapt the use of GH3.TRE-Luc reporter gene cell line for a quantitative high-throughput screening (qHTS) platform, we miniaturized the reporter gene assay to a 1536-well plate format. 1280 chemicals from the Library of Pharmacologically Active Compounds (LOPAC) and the National Toxicology Program (NTP) 1408 compound collection were analyzed to identify potential thyroid hormone receptor (TR) agonists and antagonists. Of the 2688 compounds tested, eight scored as potential TR agonists when the positive hit cut-off was defined at ≥10% efficacy, relative to maximal triiodothyronine (T3) induction, and with only one of those compounds reaching ≥20% efficacy. One common class of compounds positive in the agonist assays were retinoids such as all-trans retinoic acid, which are likely acting via the retinoid-X receptor, the heterodimer partner with the TR. Five potential TR antagonists were identified, including the antiallergy drug tranilast and the anxiolytic drug SB 205384 but also some cytotoxic compounds like 5-fluorouracil. None of the inactive compounds were structurally related to T3, nor had been reported elsewhere to be thyroid hormone disruptors, so false negatives were not detected. None of the low potency (>100µM) TR agonists resembled T3 or T4, thus these may not bind directly in the ligand-binding pocket of the receptor. For TR agonists, in the qHTS, a hit cut-off of ≥20% efficacy at 100 µM may avoid identification of positives with low or no physiological relevance. The miniaturized GH3.TRE-Luc assay offers a promising addition to the in vitro test battery for endocrine disruption, and given the low percentage of compounds testing positive, its high-throughput nature is an important advantage for future toxicological screening.
    03/2014; 8(1):36-46. DOI:10.2174/2213988501408010036
Show more