Article

Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells.

Program in Cancer Biology and Epigenomics, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2008; 105(11):4329-34. DOI: 10.1073/pnas.0800467105
Source: PubMed

ABSTRACT Embryonic stem cells sustain a microenvironment that facilitates a balance of self-renewal and differentiation. Aggressive cancer cells, expressing a multipotent, embryonic cell-like phenotype, engage in a dynamic reciprocity with a microenvironment that promotes plasticity and tumorigenicity. However, the cancer-associated milieu lacks the appropriate regulatory mechanisms to maintain a normal cellular phenotype. Previous work from our laboratory reported that aggressive melanoma and breast carcinoma express the embryonic morphogen Nodal, which is essential for human embryonic stem cell (hESC) pluripotency. Based on the aberrant expression of this embryonic plasticity gene by tumor cells, this current study tested whether these cells could respond to regulatory cues controlling the Nodal signaling pathway, which might be sequestered within the microenvironment of hESCs, resulting in the suppression of the tumorigenic phenotype. Specifically, we discovered that metastatic tumor cells do not express the inhibitor to Nodal, Lefty, allowing them to overexpress this embryonic morphogen in an unregulated manner. However, exposure of the tumor cells to a hESC microenvironment (containing Lefty) leads to a dramatic down-regulation in their Nodal expression concomitant with a reduction in clonogenicity and tumorigenesis accompanied by an increase in apoptosis. Furthermore, this ability to suppress the tumorigenic phenotype is directly associated with the secretion of Lefty, exclusive to hESCs, because it is not detected in other stem cell types, normal cell types, or trophoblasts. The tumor-suppressive effects of the hESC microenvironment, by neutralizing the expression of Nodal in aggressive tumor cells, provide previously unexplored therapeutic modalities for cancer treatment.

Full-text

Available from: Lynne-Marie Postovit, Jun 02, 2015
0 Followers
 · 
116 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to study live cells as they progress through the stages of cancer provides the opportunity to discover dynamic networks underlying pathology, markers of early stages, and ways to assess therapeutics. Genetically engineered animal models of cancer, where it is possible to study the consequences of temporal-specific induction of oncogenes or deletion of tumor suppressors, have yielded major insights into cancer progression. Yet differences exist between animal and human cancers, such as in markers of progression and response to therapeutics. Thus, there is a need for human cell models of cancer progression. Most human cell models of cancer are based on tumor cell lines and xenografts of primary tumor cells that resemble the advanced tumor state, from which the cells were derived, and thus do not recapitulate disease progression. Yet a subset of cancer types have been reprogrammed to pluripotency or near-pluripotency by blastocyst injection, by somatic cell nuclear transfer and by induced pluripotent stem cell (iPS) technology. The reprogrammed cancer cells show that pluripotency can transiently dominate over the cancer phenotype. Diverse studies show that reprogrammed cancer cells can, in some cases, exhibit early-stage phenotypes reflective of only partial expression of the cancer genome. In one case, reprogrammed human pancreatic cancer cells have been shown to recapitulate stages of cancer progression, from early to late stages, thus providing a model for studying pancreatic cancer development in human cells where previously such could only be discerned from mouse models. We discuss these findings, the challenges in developing such models and their current limitations, and ways that iPS reprogramming may be enhanced to develop human cell models of cancer progression. © 2015 The Authors.
    The EMBO Journal 02/2015; 34(6). DOI:10.15252/embj.201490736 · 10.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H(+) and lactate. H(+) extrusion is in part accomplished by Na(+)/H(+) exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pHi estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na(+)/H(+) exchanger activity from Na(+) dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. A 2 hours treatment with LeftyA (8ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 74%), Na(+)/H(+) exchanger activity (by 56%), pHi (from 7.22±0.02 to 7.05±0.02), and lactate release (by 58%). LeftyA markedly down-regulates NHE1 expression, Na(+)/H(+) exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 03/2015; 460(3). DOI:10.1016/j.bbrc.2015.03.120 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently, FDA-approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain whether targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma. Mol Cancer Res; 1-11. ©2015 AACR. ©2015 American Association for Cancer Research.
    Molecular Cancer Research 03/2015; 13(4). DOI:10.1158/1541-7786.MCR-14-0077 · 4.50 Impact Factor