Anesthesia awareness and the bispectral index

Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
New England Journal of Medicine (Impact Factor: 54.42). 04/2008; 358(11):1097-108. DOI: 10.1056/NEJMoa0707361
Source: PubMed

ABSTRACT Awareness during anesthesia is a serious complication with potential long-term psychological consequences. Use of the bispectral index (BIS), developed from a processed electroencephalogram, has been reported to decrease the incidence of anesthesia awareness when the BIS value is maintained below 60. In this trial, we sought to determine whether a BIS-based protocol is better than a protocol based on a measurement of end-tidal anesthetic gas (ETAG) for decreasing anesthesia awareness in patients at high risk for this complication.
We randomly assigned 2000 patients to BIS-guided anesthesia (target BIS range, 40 to 60) or ETAG-guided anesthesia (target ETAG range, 0.7 to 1.3 minimum alveolar concentration [MAC]). Postoperatively, patients were assessed for anesthesia awareness at three intervals (0 to 24 hours, 24 to 72 hours, and 30 days after extubation).
We assessed 967 and 974 patients from the BIS and ETAG groups, respectively. Two cases of definite anesthesia awareness occurred in each group (absolute difference, 0%; 95% confidence interval [CI], -0.56 to 0.57%). The BIS value was greater than 60 in one case of definite anesthesia awareness, and the ETAG concentrations were less than 0.7 MAC in three cases. For all patients, the mean (+/-SD) time-averaged ETAG concentration was 0.81+/-0.25 MAC in the BIS group and 0.82+/-0.23 MAC in the ETAG group (P=0.10; 95% CI for the difference between the BIS and ETAG groups, -0.04 to 0.01 MAC).
We did not reproduce the results of previous studies that reported a lower incidence of anesthesia awareness with BIS monitoring, and the use of the BIS protocol was not associated with reduced administration of volatile anesthetic gases. Anesthesia awareness occurred even when BIS values and ETAG concentrations were within the target ranges. Our findings do not support routine BIS monitoring as part of standard practice. ( number, NCT00281489 [].).

Download full-text


Available from: Michael Bottros, Jul 30, 2015
  • Source
    • "awareness during induction of anesthesia [16]; however, this concentration does not effectively attenuate the hemodynamic responses to intubation. This study found that the mean SBP, DBP, MAP, HR, and RPP in the control group were significantly higher than those of the dexmedetomidine group all through 10 minutes after DLT intubation, except mean SBP, DBP, and MAP between groups at T1. Corresponding to a previous study, this study showed that maximal increases of blood pressure and heart rate occurred 1 to 2 minutes after DLT intubation in the control group and returned to baseline within 5 minutes [2]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine the effect of dexmedetomidine on hemodynamic responses to DLT intubation compared to placebo and to assess the adverse effects related to dexmedetomidine. Sixty patients were randomly allocated to receive 0.7 μ g/kg dexmedetomidine (n = 30) or normal saline (n = 30) 10 minutes before general anesthesia. Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), heart rate (HR), and rate pressure product (RPP) between groups were recorded. During intubation and 10 minutes afterward (T1-T10), the mean SBP, DBP, MAP, HR, and RPP in the control group were significantly higher than those in the dexmedetomidine group throughout the study period except at T1. The mean differences of SBP, DBP, MAP, HR, and RPP were significantly higher in the control group, with the value of 15.2 mmHg, 10.5 mmHg, 14 mmHg, 10.5 beats per minute, and 2,462.8 mmHg min(-1). Four patients in the dexmedetomidine group and 1 patient in the control group developed hypotension, while 2 patients in the dexmedetomidine group had bradycardia. Prophylactic dexmedetomidine can attenuate the hemodynamic responses to laryngoscopy and DLT intubation with minimal adverse effects. This trial is registered with NCT01289769.
    Anesthesiology Research and Practice 07/2013; 2013:236089. DOI:10.1155/2013/236089
  • Source
    • "This improved understanding will allow more astute interpretations of findings from clinical examinations of patients under general anesthesia, which when coupled with results from ongoing systems neuroscience studies, should lead to improved, neurophysiologically based approaches to producing general anesthesia and to monitoring the states of the brain under general anesthesia. In this way, anesthesiologists can avoid even rare though potentially traumatic events, such as awareness under general anesthesia (Avidan et al. 2008, Errando et al. 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. How anesthetic drugs create the state of general anesthesia is considered a major mystery of modern medicine. Unconsciousness, induced by altered arousal and/or cognition, is perhaps the most fascinating behavioral state of general anesthesia. We perform a systems neuroscience analysis of the altered arousal states induced by five classes of intravenous anesthetics by relating their behavioral and physiological features to the molecular targets and neural circuits at which these drugs are purported to act. The altered states of arousal are sedation-unconsciousness, sedation-analgesia, dissociative anesthesia, pharmacologic non-REM sleep, and neuroleptic anesthesia. Each altered arousal state results from the anesthetic drugs acting at multiple targets in the central nervous system. Our analysis shows that general anesthesia is less mysterious than currently believed.
    Annual Review of Neuroscience 07/2011; 34:601-28. DOI:10.1146/annurev-neuro-060909-153200 · 22.66 Impact Factor
  • Source
    • "It is defined as an explicit recall to some event during surgery [1]. Inter-operative awareness and experiencing bad dream during anesthesia could affect patients mentally and also potentially long term psychological damage [2] [3]. These incidents could be prevented by monitoring the effect of anesthetic drugs and the depth of anesthesia to reduce the inter-operative awareness. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Electroencephalogram (EEG) signals are often contaminated with artifacts such as electromyography (EMG), eye blink and eye ball movement. These contaminated EEG signals may give incorrect values of Bispectral Index. If fixed band-pass filter is used to filter the overlapping signals between the EEG and the artifacts, the useful information in EEG signal could be lost. This paper proposes a method to filter the EEG signals using wavelet adaptive techniques. The preliminary result shows that this technique is capable to remove the artifacts from the EEG signal efficiently.
    01/2010; DOI:10.1109/NANOMED.2010.5749796
Show more