Cognitive impairment in multiple sclerosis can be predicted by imaging early in the disease

Institute of Neurology, University College London, Queen Square, London, UK.
Journal of neurology, neurosurgery, and psychiatry (Impact Factor: 5.58). 09/2008; 79(8):955-8. DOI: 10.1136/jnnp.2007.138685
Source: PubMed

ABSTRACT Cognitive impairment is common in multiple sclerosis (MS) and adds significantly to the burden of the disease. The ability to predict future cognitive impairment from imaging obtained at disease onset has not been investigated.
62 patients imaged within 3 months of a clinically isolated syndrome were assessed neuropsychologically 7 years later. Baseline and periodic MRI measures of lesions, atrophy and normal-appearing white and grey matter were regressed against neuropsychological scores to explore the best predictors of cognitive outcome.
28 patients had developed clinically definite MS at follow-up and a further nine met revised McDonald criteria for MS. Deficits in speed of information processing and executive function were the most common abnormalities. Poor performance correlated with high anxiety ratings. Baseline T(1) lesion metrics predicted executive deficits, and new T(2) lesions at the 3-month follow-up predicted slowed information processing. An increase in myo-inositol concentration in normal-appearing white matter over the first 3 years was associated with poor executive function.
MRI variables obtained at the onset of a clinically isolated syndrome can predict future development of cognitive abnormalities. Our findings may have implications in monitoring and treating patients.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our ability to control and inhibit behaviours that are inappropriate, unsafe, or no longer required is crucial for functioning successfully in complex environments. Here, we investigated whether a series of ocular motor (OM) inhibition tasks could dissociate deficits in patients with multiple sclerosis (MS), including patients with only a probable diagnosis (clinically isolated syndrome: CIS), from healthy individuals as well as a function of increasing disease duration. 25 patients with CIS, 25 early clinically definite MS patients (CDMS: ≤7 years of diagnosis), 24 late CDMS patients (>7 years from diagnosis), and 25 healthy controls participated. All participants completed a series of classic OM inhibition tasks [antisaccade (AS) task, memory-guided (MG) task, endogenous cue task], and a neuropsychological inhibition task [paced auditory serial addition test (PASAT)]. Clinical disability was characterised in CDMS patients using the Expanded Disability Severity Scale (EDSS). OM (latency and error) and PASAT performance were compared between patient groups and controls, as well as a function of disease duration. For CDMS patients only, results were correlated with EDSS score. All patient groups made more errors than controls on all OM tasks; error rate did not increase with increasing disease duration. In contrast, saccade latency (MG and endogenous cue tasks) was found to worsen with increasing disease duration. PASAT performance did not discriminate patient groups or disease duration. The EDSS did not correlate with any measure. These OM measures appear to dissociate deficit between patients at different disease durations. This suggests their utility as a measure of progression from the earliest inception of the disease.
    Journal of Neurology 04/2015; 262(5). DOI:10.1007/s00415-015-7645-3 · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: For patients presenting with clinically isolated syndrome, the treating clinician needs to advise the patient on the probability of conversion to clinically definite multiple sclerosis. MR imaging may give useful prognostic information, and there is large body of literature pertaining to the use of MR imaging in assessing patients presenting with clinically isolated syndrome. This literature review evaluates the accuracy of MR imaging in predicting which patients with clinically isolated syndrome will go on to develop long-term disease and/or disability. New and emerging MR imaging technologies and their applicability to patients with clinically isolated syndrome are also considered.
    American Journal of Neuroradiology 05/2014; 36(3). DOI:10.3174/ajnr.A3954 · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While many studies correlated cognitive function with changes in brain morphology in multiple sclerosis (MS), few of them used a multi-parametric approach in a single dataset so far. We thus here assessed the predictive value of different conventional and quantitative MRI-parameters both for overall and domain-specific cognitive performance in MS patients from a single center. 69 patients (17 clinically isolated syndrome, 47 relapsing-remitting MS, 5 secondary-progressive MS) underwent the "Brief Repeatable Battery of Neuropsychological Tests" assessing overall cognition, cognitive efficiency and memory function as well as MRI at 3 Tesla to obtain T2-lesion load (T2-LL), normalized brain volume (global brain volume loss), normalized cortical volume (NCV), normalized thalamic volume (NTV), normalized hippocampal volume (NHV), normalized caudate nuclei volume (NCNV), basal ganglia R2* values (iron deposition) and magnetization transfer ratios (MTRs) for cortex and normal appearing brain tissue (NABT). Regression models including clinical, demographic variables and MRI-parameters explained 22-27% of variance of overall cognition, 17-26% of cognitive efficiency and 22-23% of memory. NCV, T2-LL and MTR of NABT were the strongest predictors of overall cognitive function. Cognitive efficiency was best predicted by NCV, T2-LL and iron deposition in the basal ganglia. NTV was the strongest predictor for memory function and NHV was particularly related to memory function. The predictive value of distinct MRI-parameters differs for specific domains of cognitive function, with a greater impact of cortical volume, focal and diffuse white matter abnormalities on overall cognitive function, an additional role of basal ganglia iron deposition on cognitive efficiency, and thalamic and hippocampal volume on memory function. This suggests the usefulness of using multiparametric MRI to assess (micro)structural correlates of different cognitive constructs.
    03/2015; 63. DOI:10.1016/j.nicl.2015.02.023