Miniaturization of Scorpion -Toxins Uncovers a Putative Ancestral Surface of Interaction with Voltage-gated Sodium Channels

Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.
Journal of Biological Chemistry (Impact Factor: 4.57). 06/2008; 283(22):15169-76. DOI: 10.1074/jbc.M801229200
Source: PubMed


The bioactive surface of scorpion beta-toxins that interact with receptor site-4 at voltage-gated sodium channels is constituted of residues of the conserved betaalphabetabeta core and the C-tail. In an attempt to evaluate the extent by which residues of the toxin core contribute to bioactivity, the anti-insect and anti-mammalian beta-toxins Bj-xtrIT and Css4 were truncated at their N and C termini, resulting in miniature peptides composed essentially of the core secondary structure motives. The truncated beta-toxins (DeltaDeltaBj-xtrIT and DeltaDeltaCss4) were non-toxic and did not compete with the parental toxins on binding at receptor site-4. Surprisingly, DeltaDeltaBj-xtrIT and DeltaDeltaCss4 were capable of modulating in an allosteric manner the binding and effects of site-3 scorpion alpha-toxins in a way reminiscent of that of brevetoxins, which bind at receptor site-5. While reducing the binding and effect of the scorpion alpha-toxin Lqh2 at mammalian sodium channels, they enhanced the binding and effect of LqhalphaIT at insect sodium channels. Co-application of DeltaDeltaBj-xtrIT or DeltaDeltaCss4 with brevetoxin abolished the brevetoxin effect, although they did not compete in binding. These results denote a novel surface at DeltaDeltaBj-xtrIT and DeltaDeltaCss4 capable of interaction with sodium channels at a site other than sites 3, 4, or 5, which prior to the truncation was masked by the bioactive surface that interacts with receptor site-4. The disclosure of this hidden surface at both beta-toxins may be viewed as an exercise in "reverse evolution," providing a clue as to their evolution from a smaller ancestor of similar scaffold.

Download full-text


Available from: Dalia Gordon, Nov 05, 2014
  • Source
    • "More recently it was shown that CTX causes a concentration-dependent decrease of the sodium current amplitude in mammalian sensory neurons. This observation is in contrast to the observed amplitude increase after PbTx application (Cohen et al., 2008; Yamaoka et al., 2009; Perez et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated Sodium Channels (VGSCs) are large transmembrane proteins that conduct sodium ions across the membrane and by doing so they generate signals of communication between many kinds of tissues. They are responsible for the generation and propagation of action potentials in excitable cells, in close collaboration with other channels like potassium channels. Genetic defects in sodium channel genes therefore can cause a wide variety of diseases, generally called ‘channelopathies’. The first insights into the mechanism of action potentials and the involvement of sodium channels originated from Hodgkin and Huxley for which they were awarded the Nobel Prize in 1963. Until now, these concepts still form the basis for understanding the functioning of VGSCs. When VGSCs sense a sufficient change in membrane potential, they are activated and will generate a massive influx of sodium ions. Immediately after, channels will start inactivating and currents decrease. In the inactivated state channels stay refractory for any new stimulus and they must return to the closed state before being susceptible to any new depolarization. On the other hand, studies with neurotoxins like tetrodotoxin (TTX) and saxitoxin (STX) also contributed largely to our today’s understanding of the structure and function of ion channels and specifically of VGSCs. Moreover, neurotoxins acting on ion channels turned out to be valuable tools in the development of new drugs for the enormous range of diseases in which ion channels are involved. A recent example of a synthetic neurotoxin that made it to the market is ziconotide (Prialt®, Elan). The original peptide, -MVIIA, is derived from the cone snail Conus magus and now FDA/EMEA-approved for the management of severe chronic pain by blocking the N-type voltage-gated calcium channels in neurons. This review focuses on the current status of research on neurotoxins acting on VGSC, their contribution to further unravel the structure and function of
    Frontiers in Pharmacology 11/2011; 2:71. DOI:10.3389/fphar.2011.00071 · 3.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tityus discrepans is a Venezuelan scorpion known to cause severe human envenomations. It contains toxins that impair proper ion channels function, affect coagulation pathways and interfere with the immunological system, leading to a widespread inflammatory syndrome. This communication reports the results of genes cloned from a cDNA expression library of venomous glands from T. discrepans. A full-length cDNA phagemid library was prepared from which 127 genes were cloned and grouped in 22 clusters showing more than one EST (expressed sequence tag) (74%), and 29 singlets (26%). The identified putative proteins were assorted into two groups. One conformed by precursors similar to gene products implicated in common cellular processes, accounting for 13.4% of transcripts and other comprising putative toxins, representing 50% of total ESTs. A total of 14 sequences are thought to be peptides that recognize or affect Na(+)-channel function and 6 peptides that affect K(+)-channels. Among these two classes of venom components are several for which the peptides were previously isolated and characterized. However, based on sequence similarities, three distinct classes of peptides were also identified and are reported: a bradykinin-potentiating peptide, a defensin-like peptide and an acidic peptide of unknown function. The N-terminal amino acid sequence of several peptides is reported here for the first time. A phylogenetic tree analysis is also reported, as well as three three-dimensional models of representative toxins.
    Biochimie 06/2009; 91(8):1010-9. DOI:10.1016/j.biochi.2009.05.005 · 2.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several peptide families, including insect antimicrobial peptides, plant protease inhibitors, and ion channel gating modifiers, as well as blockers from scorpions, bear a common CSalphabeta scaffold. The high structural similarity between two peptides containing this scaffold, drosomycin and a truncated scorpion beta-toxin, has prompted us to examine and compare their biological effects. Drosomycin is the most expressed antimicrobial peptide in Drosophila melanogaster immune response. A truncated scorpion beta-toxin is capable of binding and inducing conformational alteration of voltage-gated sodium channels. Here, we show that both peptides (i) exhibit anti-fungal activity at micromolar concentrations; (ii) enhance allosterically at nanomolar concentration the activity of LqhalphaIT, a scorpion alpha toxin that modulates the inactivation of the D. melanogaster voltage-gated sodium channel (DmNa(v)1); and (iii) inhibit the facilitating effect of the polyether brevetoxin-2 on DmNa(v)1 activation. Thus, the short CSalphabeta scaffold of drosomycin and the truncated scorpion toxin can maintain more than one bioactivity, and, in light of this new observation, we suggest that the biological role of peptides bearing this scaffold should be carefully examined. As for drosomycin, we discuss the intriguing possibility that it has additional functions in the fly, as implied by its tight interaction with DmNa(v)1.
    Journal of Biological Chemistry 08/2009; 284(35):23558-63. DOI:10.1074/jbc.M109.023358 · 4.57 Impact Factor
Show more