Article

Toxicological effect of ZnO nanoparticles based on bacteria

College of Materials Science and Engineering, Sichuan University, Chengdu, China.
Langmuir (Impact Factor: 4.38). 05/2008; 24(8):4140-4. DOI: 10.1021/la7035949
Source: PubMed

ABSTRACT Streptococcus agalactiae and Staphylococcus aureus are two pathogenetic agents of several infective diseases in humans. Biocidal effects and cellular internalization of ZnO nanoparticles (NPs) on two bacteria are reported, and ZnO NPs have a good bacteriostasis effect. ZnO NPs were synthesized in the EG aqueous system through the hydrolysis of ionic Zn2+ salts. Particle size and shape were controlled by the addition of the various surfactants. Bactericidal tests were performed in an ordinary broth medium on solid agar plates and in liquid systems with different concentrations of ZnO NPs. The biocidal action of ZnO materials was studied by transmission electron microscopy of bacteria ultrathin sections. The results confirmed that bactericidal cells were damaged after ZnO NPs contacted with them, showing both gram-negative membrane and gram-positive membrane disorganization. The surface modification of ZnO NPs causes an increase in membrane permeability and the cellular internalization of these NPs whereas there is a ZnO NP structure change inside the cells.

0 Bookmarks
 · 
148 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mechanism of antibacterial action of silver nanoparticles (AgNp) was investigated by employing a combination of microbiology and geochemical approaches to contribute to the realistic assessment of nanotoxicity. Our studies showed that suspending AgNp in media with different levels of chloride relevant to environmental conditions produced low levels of ionic silver thereby suggesting that dissolution of silver ions from nanoparticulate surface could not be the sole mechanism of toxicity. An Escherichia coli based bioreporter strain responsive to silver ions together with mutant strains of E. coli lacking specific protective systems were tested against AgNp. Deletion mutants lacking silver ion efflux systems and resistance mechanisms against oxidative stress showed an increased sensitivity to AgNp. However, the bioreporter did not respond to silver nanoparticles. Our results suggest that oxidative stress is a major toxicity mechanism and that this is at least partially associated with ionic silver, but that bulk dissolution of silver into the medium is not sufficient to account for the observed effects. Chloride ions do not appear to offer significant protection, indicating that chloride in receiving waters will not necessarily protect environmental bacteria from the toxic effects of nanoparticles in effluents.
    Journal of Hazardous Materials 04/2015; 287. DOI:10.1016/j.jhazmat.2014.12.066 · 4.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of the hydrophilicity and length of the cation alkyl chain in imidazolium-based ionic liquids on the dispersability of ZnO nanoparticles by ultrasound treatment was studied by dynamic light scattering and advanced rheology. ZnO nanopowder synthesized by chemical vapor synthesis was used in parallel with one commercially available material. Before preparation of the dispersion, the nanoparticles characteristics were determined by transmission electron microscopy, X-ray diffraction, nitrogen adsorption with BET analysis, and FT-IR spectroscopy. Hydrophilic ionic liquids dispersed all studied nanopowders better and in the series of hydrophilic ionic liquids, an improvement of the dispersion quality with increasing length of the alkyl chain of the cation was observed. Especially, for ionic liquids with short alkyl chain, additional factors like nanoparticle concentration in the dispersion and the period of the ultrasonic treatment had significant influence on the dispersion quality. Additionally, nanopowder characteristics (crystallite shape and size as well as the agglomeration level) influenced the dispersion quality. The results indicate that the studied ionic liquids are promising candidates for absorber media at the end of the gas phase synthesis reactor allowing the direct preparation of non-agglomerated nanoparticle dispersions without supplementary addition of dispersants and stabilizers.
    Journal of Nanoparticle Research 05/2014; 16(5). DOI:10.1007/s11051-014-2341-2 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the potential adverse effects of zinc oxide nanoparticles ([ZnO(SM20(+)) NPs] zinc oxide nanoparticles, positively charged, 20 nm) on pregnant dams and embryo-fetal development after maternal exposure over the period of gestational days 5-19 with Sprague-Dawley rats. ZnO(SM20(+)) NPs were administered to pregnant rats by gavage at 0, 100, 200, and 400 mg/kg/day. All dams were subjected to a cesarean section on gestational day 20, and all of the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight after administration of 400 mg/kg/day NPs; reduced food consumption after administration of 200 and 400 mg/kg/day NPs; and decreased liver weight and increased adrenal glands weight after administration of 400 mg/kg/day NPs. However, no treatment-related difference in: number of corpora lutea; number of implantation sites; implantation rate (%); resorption; dead fetuses; litter size; fetal deaths and placental weights; and sex ratio were observed between the groups. On the other hand, significant decreases between treatment groups and controls were seen for fetal weights after administration of 400 mg/kg/day NPs. Morphological examinations of the fetuses demonstrated significant differences in incidences of abnormalities in the group administered 400mg/kg/day. Meanwhile, no significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that oral doses for the study with 15-days repeated of ZnO(SM20(+)) NPs were maternotoxic in the 200 mg/kg/day group, and embryotoxic in the 400 mg/kg/day group.
    International Journal of Nanomedicine 01/2014; 9 Suppl 2:159-71. DOI:10.2147/IJN.S57932 · 4.20 Impact Factor