Article

Genetic Dissection of Neural Circuits

Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
Neuron (Impact Factor: 15.98). 04/2008; 57(5):634-60. DOI: 10.1016/j.neuron.2008.01.002
Source: PubMed

ABSTRACT Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development.

2 Followers
 · 
193 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 04/2015; 86(1):106-139. DOI:10.1016/j.neuron.2015.03.034 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding behavior requires unraveling the mysteries of neurons, glia, and their extensive connectivity. Drosophila has emerged as an excellent organism for studying the neural basis of behavior. This can be largely attributed to the extensive effort of the fly community to develop numerous sophisticated genetic tools for visualizing, mapping, and manipulating behavioral circuits. Here, we attempt to highlight some of the new reagents, techniques and approaches available for dissecting behavioral circuits in Drosophila. We focus on detailing intersectional strategies such as the Flippase-induced intersectional Gal80/Gal4 repression (FINGR), because of the tremendous potential they possess for mapping the minimal number of cells required for a particular behavior. The logic and strategies outlined in this review should have broad applications for other genetic model organisms.
    Journal of Comparative Physiology 04/2015; DOI:10.1007/s00359-015-1010-y · 1.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defensive behaviors reflect underlying emotion states, such as fear. The hypothalamus plays a role in such behaviors, but prevailing textbook views depict it as an effector of upstream emotion centers, such as the amygdala, rather than as an emotion center itself. We used optogenetic manipulations to probe the function of a specific hypothalamic cell type that mediates innate defensive responses. These neurons are sufficient to drive multiple defensive actions, and required for defensive behaviors in diverse contexts. The behavioral consequences of activating these neurons, moreover, exhibit properties characteristic of emotion states in general, including scalability, (negative) valence, generalization and persistence. Importantly, these neurons can also condition learned defensive behavior, further refuting long-standing claims that the hypothalamus is unable to support emotional learning and therefore is not an emotion center. These data indicate that the hypothalamus plays an integral role to instantiate emotion states, and is not simply a passive effector of upstream emotion centers.
    eLife Sciences 03/2015; 4. DOI:10.7554/eLife.06633 · 8.52 Impact Factor

Preview

Download
2 Downloads
Available from