Formation of fluorine-18 labeled diaryl ureas - labeled VEGFR-2/PDGFR dual inhibitors as molecular imaging agents for angiogenesis

Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel.
Bioorganic & medicinal chemistry (Impact Factor: 2.79). 05/2008; 16(8):4242-51. DOI: 10.1016/j.bmc.2008.02.081
Source: PubMed


Urea subunits are common components of various pharmaceuticals' core structure. Since in most cases the design and development of PET biomarkers is based on approved or potential drugs, there is a growing need for a general labeling methodology of urea-containing pharmacophores. As a part of research in the field of molecular imaging of angiogenic processes, we synthesized several highly potent VEGFR-2/PDGFR dual inhibitors as potential PET biomarkers. The structure of these inhibitors is based on the N-phenyl-N'-{4-(4-quinolyloxy)phenyl}urea skeleton. A representative inhibitor was successfully labeled with fluorine-18 by a three-step process. Initially, a two-step radiosynthesis of 4-[(18)F]fluoro-aniline from 1,4-dinitrobenzene (60min, EOB decay corrected yield: 63%) was performed. At the third and final step, the 4-[(18)F]fluoro-aniline synthon reacted for 30min at room temperature with 4-(2-fluoro-4-isocyanato-phenoxy)-6,7-dimethoxy-quinoline to give complete conversion of the labeled synthon to 1-[4-(6,7-dimethoxy-quinolin-4-yloxy)-3-fluoro-phenyl]-3-(4-[(18)F]fluoro-phenyl)-urea. The desired labeled product was obtained after total radiosynthesis time of 3h including HPLC purification with 46+/-1% EOB decay corrected radiochemical yield, 99% radiochemical purity, 99% chemical purity, and a specific activity of 400+/-37GBq/mmol (n=5).

5 Reads
  • Source
    • "Another emerging approach is to use VEGFR-binding peptides multiplexed on ultrasound microbubbles to enhance affinity to VEGF receptors 94-96. Finally, several small molecule VEGFR kinase inhibitors have been radiolabeled with 18F and 11C for PET imaging 97-99 and, at least one of the resulting tracers demonstrated preferential accumulation at the outer rim of the tumor with a pattern of distribution which did not follow 18F-FDG uptake 98. Considering powerful techniques that are available for selection of high affinity peptides 100, various forms of antibodies, and new scaffolds with variable regions (e.g. adnectin, ref. 101), it would be natural to expect that new targeting moieties for imaging VEGF receptors would continue to be discovered. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis is a fundamental requirement for tumor growth and therefore it is a primary target for anti-cancer therapy. Molecular imaging of angiogenesis may provide novel opportunities for early diagnostic and for image-guided optimization and management of therapeutic regimens. Here we reviewed the advances in targeted imaging of key biomarkers of tumor angiogenesis, integrins and receptors for vascular endothelial growth factor (VEGF). Tracers for targeted imaging of these biomarkers in different imaging modalities are now reasonably well-developed and PET tracers for integrin imaging are currently in clinical trials. Molecular imaging of longitudinal responses to anti-angiogenic therapy in model tumor systems revealed a complex pattern of changes in targeted tracer accumulation in tumor, which reflects drug-induced tumor regression followed by vascular rebound. Further work will define the competitiveness of targeted imaging of key angiogenesis markers for early diagnostic and image-guided therapy.
    Theranostics 05/2012; 2(5):502-15. DOI:10.7150/thno.3623 · 8.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of substituted N-(quinolin-4-yl)ethanediamine phenyl urea derivatives of biological interest were prepared by sequential quinoline synthesis, chlorination, and substitution reaction followed by reaction of resulting amine with different aryl isocyanates. All synthesized compounds (1–13) were screened for their pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Biological activity evaluation study revealed that among all the compounds screened, compounds 4 and 6 were found to have promising anti-inflammatory activity (up to 78–71 % TNF-α and 96–90 % IL-6 inhibitory activity) at a higher concentration of 10 μM with reference to standard dexamethasone (72 % TNF-α and 86 % IL-6 inhibitory activities at 1 μM). Compounds 6, 8, 10, and 11 overall exhibited promising antimicrobial activity at MIC values ranging from 10 to 30 μg/mL against all the selected pathogenic bacteria and fungi.
    Medicinal Chemistry Research 03/2012; 22(3). DOI:10.1007/s00044-012-0144-5 · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vascular endothelial growth factor (VEGF) and its receptor tyrosine kinases VEGFR-2 or kinase insert domain receptor (KDR) are attractive targets for the development of novel anticancer agents. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of selective inhibitors of KDR. Docking studies were performed to explore the binding mode between all of the inhibitors and the KDR and produce the bioactive conformation of each compound in the whole dataset. Two conformer-based alignment strategies were employed to construct reliable 3D-QSAR models. The docked conformer-based alignment strategy gave the best 3D-QSAR models. The best CoMFA and CoMSIA models gave a cross-validated coefficient q(2) of 0.546 and 0.715, non-cross-validated r(2) values of 0.936 and 0.961, predicted r(2) values of 0.673 and 0.797, respectively. The information obtained from molecular modeling studies were very helpful to design some novel selective inhibitors of KDR with desired activity.
    Journal of molecular graphics & modelling 12/2008; 27(5):642-54. DOI:10.1016/j.jmgm.2008.10.006 · 1.72 Impact Factor
Show more

Similar Publications