Occurrence of singlet oxygen oxygenation of oleic acid and linoleic acid in the skin of live mice.

Department of Food Science, Graduate School of Nutrition and Bioscience, The University of Tokushima, Tokushima, Japan.
Free Radical Research (Impact Factor: 3.28). 04/2008; 42(3):197-204. DOI: 10.1080/10715760801948088
Source: PubMed

ABSTRACT To assess the contribution of singlet molecular oxygen [O(2) ((1)Delta(g))] to lipid peroxidation in vivo, this study combined gas chromatography-mass spectrometry with thin layer chromatography to analyse peroxidized lipids in the skin of hairless mice. Hydroxyoctadecenoate isomers and unconjugated hydroxyoctadecadienoate isomers derived from peroxidized oleic acid and linoleic acid, respectively, which are specific to O(2) ((1)Delta(g))-dependent oxygenation, were detected in the skin of live mice under ordinary feeding conditions. Short-term ultraviolet A (UVA)-irradiation of the skin in vivo elevated levels of the unconjugated hydroxyoctadecadienoate isomers significantly, whereas the irradiation of skin homogenate in vitro increased levels of all isomers derived from both O(2) ((1)Delta(g)) and free radical-dependent oxygenation to a much greater extent. This is the first report to demonstrate the occurrence of O(2) ((1)Delta(g))-specific oxygenation of unsaturated fatty acids in living animals.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carotenoids are known to be potent quenchers of singlet molecular oxygen [O(2) ((1)Δ(g))]. Solar light-induced photooxidative stress causes skin photoaging by accelerating the generation of reactive oxygen species via photodynamic actions in which O(2) ((1)Δ(g)) can be generated by energy transfer from excited sensitizers. Thus, dietary carotenoids seem to participate in the prevention of photooxidative stress by accumulating as antioxidants in the skin. An in vivo study using hairless mice clarified that a O(2) ((1)Δ(g)) oxygenation-specific peroxidation product of cholesterol, cholesterol 5α-hydroperoxide, accumulates in skin lipids due to ultraviolet-A exposure. Matrix metalloproteinase-9, a metalloproteinase family enzyme responsible for the formation of wrinkles and sagging, was enhanced in the skin of ultraviolet-A -irradiated hairless mice. The activation of metalloproteinase-9 and the accumulation of 5α-hydroperoxide, as well as formation of wrinkles and sagging, were lowered in mice fed a β-carotene diet. These results strongly suggest that dietary β-carotene prevents the expression of metalloproteinase-9 (at least in part), by inhibiting the photodynamic action involving the formation of 5α-hydroperoxide in the skin. Intake of β-Carotene therefore appears to be helpful in slowing down ultraviolet-A -induced photoaging in human skin by acting as a O(2) ((1)Δ(g)) quencher.
    Journal of Clinical Biochemistry and Nutrition 01/2011; 48(1):57-62. · 2.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: UVA irradiation (320-400 nm) comprises about 95 percent of incident midday solar ultraviolet irradiation. It penetrates skin much deeper than UVB irradiation. The absorption of UVA irradiation in endogenous chromophores frequently leads to the generation of reactive oxygen species such as singlet oxygen ((1)O(2)). (1)O(2) is an important biochemical intermediate in multiple biological processes. Beside other procedures, the direct detection of (1)O(2) by its luminescence is a powerful tool that helps to understand the generation of (1)O(2) during UVA exposure in solution, in vitro and in vivo. This article describes the endogenous photosensitizers, their ability to generate (1)O(2) under UVA irradiation, and the detection technology to visualize the action of (1)O(2).
    Photochemical and Photobiological Sciences 01/2012; 11(1):107-17. · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current diagnostic tests such as glycemic indicators have limitations for early detection of impaired glucose tolerance (IGT), which leads to diabetes. Oxidative stress induced by various oxidants in a random and destructive manner is considered to play an important role in the pathophysiology of a number of human disorders and diseases such as impaired glucose tolerance. We have developed an improved method for the measurement of in vivo lipid peroxidation, where the presence of 8-iso-prostaglandin F2α (8-iso-PGF2α), hydroxyoctadecadienoic acids (HODEs), hydroxyeicosatetraenoic acids (HETEs), and 7-hydroxycholesterol (7-OHCh), as well as their parent molecules, linoleic acid (LA) and cholesterol (Ch), was determined by performing LC-MS/MS (for 8-iso-PGF2α, HODE, and HETE) and GC-MS (for 7-OHCh, LA, and Ch) after reduction with triphenyl phosphine and saponification by potassium hydroxide. We then applied this method to volunteers (n = 57), including normal type (n = 43), "high-normal" (fasting plasma glucose, 100-109 mg/dL, n = 7), pre-diabetic type (IGT, n = 5), and diabetic type (n = 2) subjects who are diagnosed by performing oral glucose tolerance tests (OGTTs). Several biomarkers in plasma, such as insulin, leptin, adiponectin, interleukin-6, tumor necrosis factor-α, high sensitivity-C-reactive protein, HbA1c, and glucose levels were measured during OGTT. We found that the fasting levels of (10- and 12-(Z,E)- HODE)/LA increased significantly with increasing levels of HbA1c and glucose during OGTT and with insulin secretion and resistance index. In conclusion, 10- and 12-(Z,E)-HODE may be prominent biomarkers for the early detection of IGT and "high-normal" type without OGTT.
    PLoS ONE 01/2013; 8(5):e63542. · 3.53 Impact Factor