Article

LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence.

Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE125RD, UK.
The Plant Journal (Impact Factor: 6.58). 04/2008; 54(6):1083-93. DOI: 10.1111/j.1365-313X.2008.03481.x
Source: PubMed

ABSTRACT Arabidopsis AtCTR1 is a Raf-like protein kinase that interacts with ETR1 and ERS and negatively regulates ethylene responses. In tomato, several CTR1-like proteins could perform this role. We have characterized LeCTR2, which has similarity to AtCTR1 and also to EDR1, a CTR1-like Arabidopsis protein involved in defence and stress responses. Protein-protein interactions between LeCTR2 and six tomato ethylene receptors indicated that LeCTR2 interacts preferentially with the subfamily I ETR1-type ethylene receptors LeETR1 and LeETR2, but not the NR receptor or the subfamily II receptors LeETR4, LeETR5 and LeETR6. The C-terminus of LeCTR2 possesses serine/threonine kinase activity and is capable of auto-phosphorylation and phosphorylation of myelin basic protein in vitro. Overexpression of the LeCTR2 N-terminus in tomato resulted in altered growth habit, including reduced stature, loss of apical dominance, highly branched inflorescences and fruit trusses, indeterminate shoots in place of determinate flowers, and prolific adventitious shoot development from the rachis or rachillae of the leaves. Expression of the ethylene-responsive genes E4 and chitinase B was upregulated in transgenic plants, but ethylene production and the level of mRNA for the ethylene biosynthetic gene ACO1 was unaffected. The leaves and fruit of transgenic plants also displayed enhanced susceptibility to infection by the fungal pathogen Botrytis cinerea, which was associated with much stronger induction of pathogenesis-related genes such as PR1b1 and chitinase B compared with the wild-type. The results suggest that LeCTR2 plays a role in ethylene signalling, development and defence, probably through its interactions with the ETR1-type ethylene receptors of subfamily I.

1 Bookmark
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some molecular aspects of flower senescence have been reviewed. The isolation, identification and characterization of different genes from various flowers (mainly from petals) associated with senescence have been discussed. The isolated genes were divided into different groups. A large proportion of genes have been found to be upregulated during flower senescence while some genes were also found to be downregulated indicating that there exists a complex interplay between the expression patterns of various genes. The genes involved in petal expansion are found to be upregulated during normal flower development from anthesis to open flower stage, but XTH (Xyloglucan endotransglucosylase hydrolase) is found to be involved in petal expansion as well as abscission. Cysteine proteases or the genes encoding cysteine proteases (assigned a central role in protein degradation) have been identified from various flower systems, but no cysteine protease has been identified from senescing Mirabilis jalapa flowers. In addition to proteases, the genes encoding ubiquitin (exhibiting proteasomal degradation by 26S proteasomes) have also been identified suggesting the two alternate pathways for protein degradation. Genes encoding specific nucleases have also been identified, but they displayed an early increase in transcript abundance before the senescence symptoms become evident and characterize the involvement of PCD during flower senescence. A range of transcription factors are described and their possible role in flower senescence has been discussed. A detailed description of genes involved in ethylene synthesis and the components involved in ethylene signaling have been presented.
    Planta 11/2013; · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a primary source of lycopene in the human diet, fleshy fruits synthesize this compound both de novo and via chlorophyll metabolism during ripening. SlSGR1 encodes a STAY-GREEN protein that plays a critical role in the regulation of chlorophyll degradation in tomato leaves and fruits. We report that SlSGR1 can regulate tomato (Solanum lycopersicum) lycopene accumulation through direct interaction with a key carotenoid synthetic enzyme SlPSY1, and can inhibit its activity. This interaction with SlSGR1 mediates lycopene accumulation during tomato fruit maturation. We confirmed this inhibitory activity in bacteria engineered to produce lycopene, where the introduction of SlSGR1 reduced dramatically lycopene biosynthesis. The repression of SlSGR1 in transgenic tomato fruits resulted in altered accumulation patterns of phytoene and lycopene, whilst simultaneously elevating SlPSY1 mRNA accumulation and plastid conversion at the early stages of fruit ripening, resulting in increased lycopene and β-carotene (four- and nine-fold, respectively) in red ripe fruits. SlSGR1 influences ethylene signal transduction via the altered expression of ethylene receptor genes and ethylene-induced genes. Fruit shelf-life is extended significantly in SlSGR1-repressed tomatoes. Our results indicate that SlSGR1 plays a pivotal regulatory role in color formation and fruit ripening regulation in tomato, and further suggest that SlSGR1 activity is mediated through direct interaction with PSY1.
    New Phytologist 02/2013; · 6.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants are endowed with a sophisticated defense mechanism that gives signals to plant cells about the immediate danger from surroundings and protects them from pathogen invasion. In the search for the particular proteins involved in fruit defense responses, we report here a comparative analysis of tomato fruit (Solanum lycopersicum cv. Ailsa Craig) infected by Rhizopus nigricans Ehrenb, which is a significant contributor to postharvest rot disease in fresh tomato fruits. In total, four hundred forty-five tomato proteins were detected in common between the non-infected group and infected tomato fruit of mature green. Forty-nine differentially expressed spots in 2-D gels were identified, and were sorted into fifteen functional groups. Most of these proteins participate directly in the stress response process, while others were found to be involved in several equally important biological processes: protein metabolic process, carbohydrate metabolic process, ethylene biosynthesis, and cell death and so on. These responses occur in different cellular components, both intra- and extracellular spaces. The differentially expressed proteins were integrated into several pathways to show the regulation style existing in tomato fruit host. The composition of the collected proteins populations and the putative functions of the identified proteins argue for their roles in pathogen-plant interactions. Collectively results provide evidence that several regulatory pathways contribute to the resistance of tomato fruit to pathogen.
    PLoS ONE 01/2013; 8(9):e73034. · 3.73 Impact Factor