Article

The homeostasis of iron and suppression of HO-1 involved in the protective effects of nimodipine on neurodegeneration induced by aluminum overloading in mice.

Department of Pharmacology of Chong Qing Medical University, China.
European Journal of Pharmacology (Impact Factor: 2.59). 06/2008; 586(1-3):100-5. DOI: 10.1016/j.ejphar.2008.02.033
Source: PubMed

ABSTRACT Aluminum intoxication can cause damage to the cognitive function and neurodegenerative diseases. In the present study, we investigated the role of iron homeostasis and heme oxygenase-1 (HO-1) expression in the protective effects of nimodipine on the neurodegeneration induced by aluminum overloading in mice. 2 microl of 0.25% aluminum chloride solution was intracerebroventricularly injected once a day for five days to induce the neurodegeneration of mice. Nimodipine was administered by intragastric gavage (80 mg/kg per day) for 30 days. We observed that nimodipine could improve the performance of behavior test related to the learning and memory function and ameliorate pathological changes of hippocampi caused by aluminum. Results of western blot, immunohistochemistry study, biochemical test and inductively coupled plasma-atomic emission spectrometry showed that nimodipine could suppress the increased expression of HO-1 protein, and decrease the elevation of both HO activity and iron level in hippocampi, induced by aluminum overloading. These results indicate that nimodipine can suppress the neurodegenerative development induced by aluminum overloading and the mechanism of its action is at least partly related to keeping the homeostasis of iron through blunting the expression of HO-1 in hippocampus.

0 Bookmarks
 · 
43 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelia growth factor VEGF (VEGF-A or VEGF165) is a potent angiogenic factor that also signals neuroprotection through activation of its cognate receptor VEGFR-2. In this capacity, VEGF signaling can rescue neurons from the damage induced by stressful stimuli many of which elicit oxidative stress. However, the regulatory role that VEGFR-2 plays in providing neuroprotection remains elusive. Therefore, we investigated the effects of VEGFR-2 inhibition on primary cultures of mature hippocampal neurons undergoing nutritional stress. We found that neurons cultured under nutritional stress had increased expression of VEGF and its receptors, VEGFR-1, VEGFR-2 and NP-1 as well as enhanced levels of VEGFR-2 phosphorylation. These neurons also showed increased activation of the prosurvival pathways for MEK/ERK1/2 and PI3K/Akt, enhanced phosphorylation (inactivation) of the pro-apoptotic BAD and higher levels of the anti-apoptotic protein Bcl-xL, all of which were augmented by treatments with exogenous VEGF and blocked by VEGFR-2 inhibition. The blockade of VEGFR-2 function also elicited a cytotoxicity that was accompanied by caspase-3 activation, induction of hemeoxygenase-1 (HO-1), oxidative stress and a collapse in the mitochondrial membrane potential (ΔΨm). Knockdown of VEGFR-2 by siRNA generated a similar pattern of redox change and mitochondrial impairment. Pretreatments with VEGF, VEGF-B or the antioxidant N-acetyl-cysteine (NAC) rescued SU1498 or siRNA treated neurons from the mitochondrial dysfunction and oxidative stress induced by VEGFR-2 inhibition in a timely fashion. These findings suggested that VEGF or VEGF-B can provide neuroprotection by signaling through an alternate VEGF receptor. Together, our findings suggest that VEGF signaling through VEGFR-2 plays a critical regulatory role in protecting stressed hippocampal neurons from the damaging effects of an oxidative insult. These findings also implicate VEGFR-1 or NP-1 as compensatory receptors that mediate neuroprotection when VEGFR-2 function is blocked.
    Free Radical Biology & Medicine 05/2013; · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mechanisms responsible for pathological iron deposition in the aging and degenerating mammalian CNS remain poorly understood. The stress protein, HO-1 mediates the degradation of cellular heme to biliverdin/bilirubin, free iron, and CO and is up-regulated in the brains of persons with Alzheimer's disease and Parkinson's disease. HO-1 induction in primary astroglial cultures promotes deposition of non-transferrin iron, mitochondrial damage and macroautophagy, and predisposes cocultured neuronal elements to oxidative injury. To gain a better appreciation of the role of glial HO-1 in vivo, we probed for aberrant brain iron deposition using Perls' method and dynamic secondary ion mass spectrometry in novel, conditional GFAP.HMOX1 transgenic mice that selectively over-express human HO-1 in the astrocytic compartment. At 48 weeks, the GFAP.HMOX1 mice exhibited increased deposits of glial iron in hippocampus and other subcortical regions without overt changes in iron-regulatory and iron-binding proteins relative to age-matched wild-type animals. Dynamic secondary ion mass spectrometry revealed abundant FeO(-) signals in the transgenic, but not wild-type, mouse brain that colocalized to degenerate mitochondria and osmiophilic cytoplasmic inclusions (macroautophagy) documented by TEM. Sustained up-regulation of HO-1 in astrocytes promotes pathological brain iron deposition and oxidative mitochondrial damage characteristic of Alzheimer's disease-affected neural tissues. Curtailment of glial HO-1 hyperactivity may limit iron-mediated cytotoxicity in aging and degenerating neural tissues.
    Journal of Neurochemistry 08/2012; 123(2):325-36. · 3.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aluminum (Al) overload is correlated with hypochromic anemia. It is possible that Al impedes heme biosynthesis and degradation by affecting the activity of biosynthetic enzymes. However, the molecular mechanisms by which Al affects these enzymes are unknown. Here, we show that long-term exposure of Sprague-Dawley rats to Al decreased hemoglobin concentration and the hematocrit level. In addition, the activity of aminolevulinic acid dehydratase (ALA-D) in rat liver was reduced, but heme oxygenase (HO) activity was enhanced, suggesting an impairment of heme homeostasis. The increase in HO activity was due to up-regulation of mRNA and protein of an inducible HO isozyme, HO-1. Furthermore, we found that reactive oxygen species (ROS)-mediated activation of c-Jun N-terminal kinase (JNK) was critical for HO-1 induction by Al, because ROS scavengers and JNK inhibitors abrogated enhancement of HO-1 by Al in rat hepatocytes. Thus, Al enhances HO-1 expression through the ROS-JNK pathway, which may enhance HO activity and accelerate degradation of heme, leading to hypochromic anemia.
    Journal of inorganic biochemistry 07/2013; · 3.25 Impact Factor