Article

Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib.

Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Howard Building, Room 1012, 1275 York Ave, New York, NY 10021, USA.
Journal of Clinical Oncology (Impact Factor: 17.88). 04/2008; 26(9):1472-8. DOI: 10.1200/JCO.2007.13.0062
Source: PubMed

ABSTRACT We conducted this phase II trial to determine the efficacy of erlotinib in patients with bronchioloalveolar carcinoma (BAC) and adenocarcinoma, BAC subtype, and to determine molecular characteristics associated with response.
Patients (n = 101) with BAC (n = 12) or adenocarcinoma, BAC subtype (n = 89), were enrolled. All patients received erlotinib 150 mg daily. Epidermal growth factor receptor (EGFR) mutation, EGFR copy number, EGFR immunohistochemistry (IHC), and KRAS mutation status were analyzed in available tumors. The primary end point was response rate (RR).
Overall RR was 22% (95% CI, 14% to 31%). In patients with pure BAC, the RR and median survival were 20% and 4 months, as compared with 23% and 19 months in those with adenocarcinoma, BAC subtype. No patient (zero of 18; 95% CI, 0% to 19%) whose tumor harbored a KRAS mutation responded to erlotinib. Patients with EGFR mutations had an 83% RR (15 of 18; 95% CI, 65% to 94%) and 23-month median OS. On univariate analysis, EGFR mutation and copy number were associated with RR and PFS. EGFR IHC was not associated with RR or progression-free survival (PFS). After multivariate analysis, only EGFR mutation was associated with RR and PFS. No molecular factors were associated with overall survival.
Erlotinib is active in BAC and adenocarcinoma, mixed subtype, BAC. Testing for EGFR and KRAS mutations can predict RR and PFS after treatment with erlotinib in this histologically enriched subset of patients with non-small-cell lung cancer (NSCLC). These data suggest that histologic subtype and molecular characteristics should be reported in clinical trials in NSCLC using EGFR-directed therapy.

0 Bookmarks
 · 
79 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the era of personalized medicine, epidermal growth factor receptor (EGFR) inhibition with tyrosine kinase inhibitor (TKI) has been a mainstay of treatment for non-small cell lung cancer (NSCLC) patients with an EGFR mutation. Acquired resistance, especially substitution of methionine for threonine at position 790 (T790M), which has accounted for more than half of the cases, developed inevitably in patients who were previously treated with EGFR-TKI. At present, there is no standard treatment for patients who have developed a resistance to EGFR-TKI. Several strategies have been developed or suggested to treat such patients. This article aimsto review the EGFR-TKI re-treatment strategy and the efficacy of different generations of EGFR-TKIs in patients with acquired resistance to prior EGFR-TKI.
    Journal of personalized medicine. 01/2014; 4(3):297-310.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives The therapeutic scheme for non-small cell lung cancer (NSCLC) patients can be improved if adapted to the individual response. For example, 60–70% of adenocarcinoma patients show response to EGFR-tyrosine kinase inhibitors in the presence of mutated EGFR. We searched for additional target molecules involved in the action of the EGFR-tyrosine kinase inhibitor erlotinib in the absence of EGFR mutations, which might be suitable for combinatorial therapy approaches. Materials and Methods Erlotinib-response associated proteins were investigated in patient-derived NSCLC mouse xenografts by reverse-phase protein array technology (RPPA) and Western blotting. A combinatorial treatment approach was carried out in NSCLC cell lines and H1299 mouse xenografts, and subsequently analysed for consequences in cell growth and signal transduction. Results AMP-activated protein kinase (AMPK) expression was increased in erlotinib responders before and after treatment. In a combinatorial approach, activation of AMPK by A-769662 and erlotinib treatment showed a synergistic effect in cell growth reduction and apoptosis activation in H1299 cells compared to the single drugs. AMPK pathway analyses revealed an effective inhibition of mTOR signaling by drug combination. In H1299 xenografts, the tumor size was significantly decreased after combinatorial treatment. Conclusion Our results suggest that AMPK activation status affects response to erlotinib in distinct lung tumor models.
    Lung Cancer 09/2014; · 3.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian low-grade serous carcinoma (LGSC) has fewer mutations than ovarian high-grade serous carcinoma (HGSC) and a less aggressive clinical course. However, an overwhelming majority of LGSC patients do not respond to conventional chemotherapy resulting in a poor long-term prognosis comparable to women diagnosed with HGSC. KRAS and BRAF mutations are common in LGSC, leading to clinical trials targeting the MAPK pathway. We assessed the stability of targetable somatic mutations over space and/or time in LGSC, with a view to inform stratified treatment strategies and clinical trial design. Eleven LGSC cases with primary and recurrent paired samples were identified (stage IIB-IV). Tumor DNA was isolated from 1-4 formalin-fixed paraffin-embedded tumor blocks from both the primary and recurrence (n = 37 tumor and n = 7 normal samples). Mutational analysis was performed using the Ion Torrent AmpliSeqTM Cancer Panel, with targeted validation using Fluidigm-MiSeq, Sanger sequencing and/or Raindance Raindrop digital PCR. KRAS (3/11), BRAF (2/11) and/or NRAS (1/11) mutations were identified in five unique cases. A novel, non-synonymous mutation in SMAD4 was observed in one case. No somatic mutations were detected in the remaining six cases. In two cases with a single matched primary and recurrent sample, two KRAS hotspot mutations (G12V, G12R) were both stable over time. In three cases with multiple samplings from both the primary and recurrent surgery some mutations (NRAS Q61R, BRAF V600E, SMAD4 R361G) were stable across all samples, while others (KRAS G12V, BRAF G469V) were unstable. Overall, the majority of cases with detectable somatic mutations showed mutational stability over space and time while one of five cases showed both temporal and spatial mutational instability in presumed drivers of disease. Investigation of additional cases is required to confirm whether mutational heterogeneity in a minority of LGSC is a general phenomenon that should be factored into the design of clinical trials and stratified treatment for this patient population.
    BMC Cancer 12/2014; 14(1):982. · 3.32 Impact Factor