Molecular Characteristics of Bronchioloalveolar Carcinoma and Adenocarcinoma, Bronchioloalveolar Carcinoma Subtype, Predict Response to Erlotinib

Cornell University, Итак, New York, United States
Journal of Clinical Oncology (Impact Factor: 18.43). 04/2008; 26(9):1472-8. DOI: 10.1200/JCO.2007.13.0062
Source: PubMed

ABSTRACT We conducted this phase II trial to determine the efficacy of erlotinib in patients with bronchioloalveolar carcinoma (BAC) and adenocarcinoma, BAC subtype, and to determine molecular characteristics associated with response.
Patients (n = 101) with BAC (n = 12) or adenocarcinoma, BAC subtype (n = 89), were enrolled. All patients received erlotinib 150 mg daily. Epidermal growth factor receptor (EGFR) mutation, EGFR copy number, EGFR immunohistochemistry (IHC), and KRAS mutation status were analyzed in available tumors. The primary end point was response rate (RR).
Overall RR was 22% (95% CI, 14% to 31%). In patients with pure BAC, the RR and median survival were 20% and 4 months, as compared with 23% and 19 months in those with adenocarcinoma, BAC subtype. No patient (zero of 18; 95% CI, 0% to 19%) whose tumor harbored a KRAS mutation responded to erlotinib. Patients with EGFR mutations had an 83% RR (15 of 18; 95% CI, 65% to 94%) and 23-month median OS. On univariate analysis, EGFR mutation and copy number were associated with RR and PFS. EGFR IHC was not associated with RR or progression-free survival (PFS). After multivariate analysis, only EGFR mutation was associated with RR and PFS. No molecular factors were associated with overall survival.
Erlotinib is active in BAC and adenocarcinoma, mixed subtype, BAC. Testing for EGFR and KRAS mutations can predict RR and PFS after treatment with erlotinib in this histologically enriched subset of patients with non-small-cell lung cancer (NSCLC). These data suggest that histologic subtype and molecular characteristics should be reported in clinical trials in NSCLC using EGFR-directed therapy.

  • Source
    • "Recent efforts in lung cancer research to detect driver mutations and novel target sites hold promise to categorize lung cancer patients for suitable therapy regimens. For example, the EGFR-TKI erlotinib represents a potentially effective cancer drug for a subset of lung tumors dependent on the mutation status of EGFR and KRAS [1] [2] [3]. However, 30–40% of patients do not respond to therapy , and most of the Erlotinib responders develop resistance after few months [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives The therapeutic scheme for non-small cell lung cancer (NSCLC) patients can be improved if adapted to the individual response. For example, 60–70% of adenocarcinoma patients show response to EGFR-tyrosine kinase inhibitors in the presence of mutated EGFR. We searched for additional target molecules involved in the action of the EGFR-tyrosine kinase inhibitor erlotinib in the absence of EGFR mutations, which might be suitable for combinatorial therapy approaches. Materials and Methods Erlotinib-response associated proteins were investigated in patient-derived NSCLC mouse xenografts by reverse-phase protein array technology (RPPA) and Western blotting. A combinatorial treatment approach was carried out in NSCLC cell lines and H1299 mouse xenografts, and subsequently analysed for consequences in cell growth and signal transduction. Results AMP-activated protein kinase (AMPK) expression was increased in erlotinib responders before and after treatment. In a combinatorial approach, activation of AMPK by A-769662 and erlotinib treatment showed a synergistic effect in cell growth reduction and apoptosis activation in H1299 cells compared to the single drugs. AMPK pathway analyses revealed an effective inhibition of mTOR signaling by drug combination. In H1299 xenografts, the tumor size was significantly decreased after combinatorial treatment. Conclusion Our results suggest that AMPK activation status affects response to erlotinib in distinct lung tumor models.
    Lung Cancer 09/2014; 86(2). DOI:10.1016/j.lungcan.2014.09.001 · 3.74 Impact Factor
  • Source
    • "This includes the recent SATURN trial, in which patients received immediate second-line therapy with erlotinib or placebo [41]. Interestingly, KRAS mutations and EGFR-activating mutations are almost always mutually exclusive, suggesting that they play functionally overlapping roles in NSCLC tumorigenesis [74] [79] [80]. Despite the clinical benefits achieved with EGFR TKIs in selected patient populations, acquired resistance has proven to be a major clinical issue. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The epidermal growth factor receptor (EGFR), a member of the HER family of receptors, has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). Several EGFR-targeted agents produce objective responses in a minority of unselected patients, but a majority of those with EGFR-activating mutations; however, all responders eventually develop resistance. The modest activity of agents that target only EGFR may be due, in part, to the complexity and interdependency of HER family signaling. The interdependent signaling that occurs between EGFR and HER2 provides a rationale for the simultaneous inhibition of these receptors with reversible and irreversible inhibitors. Several agents with activity against both EGFR and HER2 are currently under development. Irreversible EGFR/HER2 tyrosine kinase inhibitors (TKIs) (e.g., BIBW 2992, HKI-272) and pan-HER TKIs (e.g., PF00299804) comprise a novel class of agents in clinical development that may prevent and overcome inherent and acquired resistance to first-generation reversible EGFR TKIs. Other agents in development include the monoclonal antibody pertuzumab, and XL-647, which inhibits EGFR and HER2, as well as multiple vascular endothelial growth factor receptor family members. Here we briefly review the currently available EGFR-targeted agents, discuss the rationale for extending inhibition to other HER family members, weigh the merits of irreversible HER family inhibition, and summarize preclinical and clinical data with EGFR/HER2 and pan-HER inhibitors under clinical development.
    Lung cancer (Amsterdam, Netherlands) 07/2010; 69(1):1-12. DOI:10.1016/j.lungcan.2009.12.009 · 3.74 Impact Factor
  • Source
    • "Pao et al. reported for the first time that lung adenocarcinoma patients with KRAS mutations are not responsive to gefitinib or erlotinib [12]. After this seminal article, numerous studies confirmed this observation [13] [14] [15] [16] [17] [18]. In these studies, the mutational status of KRAS was investigated by direct sequencing (DS). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations inducing resistance to anti-epidermal growth factor receptor (EGFR) therapy may have a clinical impact even if present in minor cell clones which could expand during treatment. We tested this hypothesis in lung cancer patients treated with tyrosine kinase inhibitors (TKIs). Eighty-three patients with lung adenocarcinoma treated with erlotinib or gefitinib were included in this study. The mutational status of KRAS and EGFR was investigated by direct sequencing (DS). KRAS mutations were also assessed by mutant-enriched sequencing (ME-sequencing). DS detected KRAS mutations in 16 (19%) of 83 tumors; ME-sequencing identified all the mutations detected by DS but also mutations in minor clones of 14 additional tumors, for a total of 30 (36%) of 83. KRAS mutations assessed by DS and ME-sequencing significantly correlated with resistance to TKIs (P = .04 and P = .004, respectively) and significantly affected progression-free survival (PFS) and overall survival (OS). However, the predictive power of mutations assessed by ME-sequencing was higher than that obtained by DS (hazard ratio [HR] = 2.82, P = .0001 vs HR = 1.98, P = .04, respectively, for OS; HR = 2.52, P = .0005 vs HR = 2.21, P = .007, respectively, for PFS). Survival outcome of patients harboring KRAS mutations in minor clones, detected only by ME-sequencing, did not differ from that of patients with KRAS mutations detected by DS. Only KRAS mutations assessed by ME-sequencing remained an independent predictive factor at multivariate analysis. KRAS mutations in minor clones have an important impact on response and survival of patients with lung adenocarcinoma treated with EGFR-TKI. The use of sensitive detection methods could allow to more effectively identify treatment-resistant patients.
    Neoplasia (New York, N.Y.) 10/2009; 11(10):1084-92. DOI:10.1593/neo.09814 · 5.40 Impact Factor
Show more