Cardiac arrests associated with hyperkalemia during red blood cell transfusion: a case series.

Department of Anesthesiology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
Anesthesia and analgesia (Impact Factor: 3.42). 05/2008; 106(4):1062-9, table of contents. DOI: 10.1213/ane.0b013e318164f03d
Source: PubMed

ABSTRACT Transfusion-associated hyperkalemic cardiac arrest is a serious complication of rapid red blood cell (RBC) administration. We examined the clinical scenarios and outcomes of patients who developed hyperkalemia and cardiac arrest during rapid RBC transfusion.
We retrospectively reviewed the Mayo Clinic Anesthesia Database between November 1, 1988, and December 31, 2006, for all patients who developed intraoperative transfusion-associated hyperkalemic cardiac arrest.
We identified 16 patients with transfusion-associated hyperkalemic cardiac arrest, 11 adult and 5 pediatric. The majority of patients underwent three types of surgery: cancer, major vascular, and trauma. The mean serum potassium concentration measured during cardiac arrest was 7.2 +/- 1.4 mEq/L (range, 5.9-9.2 mEq/L). The number of RBC units administered before cardiac arrest ranged between 1 (in a 2.7 kg neonate) and 54. Nearly all patients were acidotic, hyperglycemic, hypocalcemic, and hypothermic at the time of arrest. Fourteen (87.5%) patients received RBC via central venous access. Commercial rapid infusion devices (pumps) were used in 8 of 11 (72.7%) of the adult patients, but RBC units were rapidly administered (pressure bags, syringe pumped) in all remaining patients. Mean resuscitation duration was 32 min (range, 2-127 min). The in-hospital survival rate was 12.5%.
The pathogenesis of transfusion-associated hyperkalemic cardiac arrest is multifactorial and potassium increase from RBC administration is complicated by low cardiac output, acidosis, hyperglycemia, hypocalcemia, and hypothermia. Large transfusion of banked RBCs and conditions associated with massive hemorrhage should raise awareness of the potential for hyperkalemia and trigger preventative measures.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade there has been a growth in the development of pathogen reduction technologies to protect the blood supply from emerging pathogens. This development has proven to be difficult for red blood cells (RBCs). However the S-303 system has been shown to effectively inactivate a broad spectrum of pathogens, while maintaining RBC quality. A paired three-arm study was performed to compare the in vitro quality of S-303-treated RBCs with RBCs stored at room temperature (RT) for the duration of the treatment (18-20 hr) and control RBCs stored at 2 to 6°C. Products were sampled weekly over 42 days of storage (n = 10) and tested using an array of in vitro assays to measure quality, metabolism, and functional variables. During S-303 treatment there was a slight loss of RBCs and hemoglobin (Hb < 5 g). Hemolysis, glucose consumption, and potassium release were similar in all groups during the 42 days of storage. S-303-treated RBCs had a significantly lower lactate concentration and pH compared to the paired controls. The S-303-treated RBCs had significantly higher adenosine triphosphate than the RT and control RBCs. There was a significant loss of 2,3-diphosphoglycerate in the S-303-treated products, which was also observed in the RT RBCs. Flow cytometry analysis demonstrated similar RBC size, morphology, expression of CD47, and glycophorin A in all groups. RBCs treated with S-303 for pathogen reduction had similar in vitro properties to the paired controls and were within transfusion guidelines.
    Transfusion 03/2014; 54(7). DOI:10.1111/trf.12545 · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To describe anesthesia for renal transplantation that progressed to a sharp potassium increase after kidney reperfusion with Euro-Collins' solution in the operative field. We will also report on diagnosis and treatment used. The use of infusion solutions in the surgical field requires careful monitoring, such as electrocardiography, measurement of serum potassium, and availability of calcium gluconate, insulin, and albuterol for immediate use. The replacement of Euro-Collins' solution for saline solution immediately before the implant may be a useful option in patients with high levels of potassium.
    09/2013; 63(5):429-32. DOI:10.1016/j.bjane.2013.10.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: La transfusión rápida de hematocomponentes y la presencia de alteraciones iónicas como la hipocalcemia y la hiperpotasemia son frecuentes en el trasplante hepático. El objetivo de este trabajo es brindar al lector una descripción ordenada y práctica de los factores etiológicos, mecanismos bioquímicos, diagnóstico y tratamiento de las alteraciones del calcio y del potasio asociadas a la transfusión masiva. Se destacan las particularidades del contexto clínico de la cirugía de trasplante hepático y se describe la intoxicación por citrato y sus factores predisponentes. Se realizó una revisión no sistemática de la literatura en las bases de datos MEDLINE, OVID y Cochrane. El manejo anestésico correcto y precoz de las alteraciones del calcio y del potasio evita complicaciones graves en el intraoperatorio de las cirugías con riesgo de hemorragia, como el trasplante de hígado.
    07/2014; DOI:10.1016/j.rcae.2014.04.003

Full-text (2 Sources)

Available from
Sep 15, 2014