Article

Age-related changes in bone morphology are accelerated in group VIA phospholipase A2 (iPLA2beta)-null mice.

Washington University School of Medicine, Department of Internal Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
American Journal Of Pathology (Impact Factor: 4.6). 05/2008; 172(4):868-81. DOI: 10.2353/ajpath.2008.070756
Source: PubMed

ABSTRACT Phospholipases A(2) (PLA(2)) hydrolyze the sn-2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA(2) (iPLA(2)beta), which participates in a variety of signaling events; iPLA(2)beta mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-gamma and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA(2)beta-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA(2)beta causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA(2)beta in bone formation.

0 Followers
 · 
354 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Genome-wide association studies suggest that plasma triacylglyceride (TAG) in humans was associated with variation in the PLA2G6 locus, a gene that encodes calcium-independent phospholipase A2 (iPLA2β). The objective of the present study is to understand the impact of genetic inactivation of iPLA2β on hepatic TAG metabolism in C57BL/6 mice. Methods: Male iPLA2β−/− mice were backcrossed with female iPLA2β−/− mice for up to 10 generations prior to experiments. Lipid and lipoprotein metabolism from plasma, hepatocytes, thigh subcutaneous adipose and thigh skeletal muscle tissues of the mice were determined under various experimental conditions. Results: The iPLA2β−/− mice, either male or female as compared with iPLA2β+/+ littermates, showed no change in fasted or postprandial plasma TAG or total cholesterol at young (12-15 weeks) or old (40-44 weeks) ages under chow diet or high-fat diet (HFD) conditions. However, fractionation of plasma lipoproteins showed that under HFD conditions, there was a significant increase (by 40%) in apoB-100 association with VLDL1 fractions in iPLA2β−/− mice as compared with iPLA2β+/+ littermates. There was no significant difference in triglyceride or cholesterol contents in the liver, muscle, or adipose tissue between iPLA2β−/− and iPLA2β+/+ littermates. Metabolic labeling experiments with cultured primary hepatocytes isolated from iPLA2β−/− mice also showed 2-fold increase in the secretion of [35S]methionine-labeled apoB-100 in VLDL1 fractions as compared with that from iPLA2β+/+ hepatocytes. Likewise, secretion of [3H]palmitate-labeled TAG from the iPLA2β−/− hepatocytes was increased by 2-fold. Conclusions: Although iPLA2β may play a role in TAG-rich VLDL1 production from cultured hepatocytes, there is no evidence that inactivation of iPLA2β would lead to dyslipidemia in mice in vivo. (J Cancer Prev 2013;18:235-248)
    09/2013; 18(3):235-248. DOI:10.15430/JCP.2013.18.3.235
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipases A(2) (PLA(2)s) are enzymes that are capable of catalyzing the hydrolysis of the sn-2 ester bond of glycerophospholipids, releasing free fatty acids, including arachidonic acid (AA), and lysophospholipids. Both products are precursor signaling molecules involved in inflammation. Among the various PLA(2)s, cytosolic GIVA cPLA(2) is considered a major target for inflammatory diseases, while secreted GIIA sPLA(2) is involved in cardiovascular diseases. We have developed lipophilic 2-oxoamides based on (S)-gamma- or delta-amino acids as potent and selective inhibitors of GIVA cPLA(2), which present interesting in vivo anti-inflammatory activity. 2-Oxoamides based on natural alpha-amino acids are selective inhibitors of GIIA sPLA(2). The mode of binding of 2-oxoamides with either GIVA cPLA(2) or GIIA sPLA(2) has been studied by various techniques.
    Pure and Applied Chemistry 01/2012; 84(9). DOI:10.1351/PAC-CON-11-10-32 · 3.11 Impact Factor