Article

Age-related changes in bone morphology are accelerated in group VIA phospholipase A2 (iPLA2beta)-null mice.

Washington University School of Medicine, Department of Internal Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
American Journal Of Pathology (Impact Factor: 4.6). 05/2008; 172(4):868-81. DOI: 10.2353/ajpath.2008.070756
Source: PubMed

ABSTRACT Phospholipases A(2) (PLA(2)) hydrolyze the sn-2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA(2) (iPLA(2)beta), which participates in a variety of signaling events; iPLA(2)beta mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-gamma and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA(2)beta-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA(2)beta causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA(2)beta in bone formation.

0 Bookmarks
 · 
320 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipase A(2) (PLA(2)) are esterases that cleave glycerophospholipids to release fatty acids and lysophospholipids. Several studies demonstrate that PLA(2) regulate growth and signaling in several cell types. However, few of these studies have focused on Ca2+-independent phospholipase A(2) (iPLA(2) or Group VI PLA(2)). This class of PLA(2) was originally suggested to mediate phospholipid remodeling in several cell types including macrophages. As such, it was labeled as a housekeeping protein and thought not to play as significant of roles in cell growth as its older counterparts cytosolic PLA(2) (cPLA(2) or Group IV PLA(2)) and secretory PLA(2) (sPLA(2) or Groups I-III, V and IX-XIV PLA(2)). However, several recent studies demonstrate that iPLA(2) mediate cell growth, and do so by participating in signal transduction pathways that include epidermal growth factor receptors (EGFR), mitogen activated protein kinases (MAPK), mdm2, and even the tumor suppressor protein p53 and the cell cycle regulator p21. The exact mechanism by which iPLA(2) mediates these pathways are not known, but likely involve the generation of lipid signals such as arachidonic acid, lysophosphatidic acid (LPA) and lysophosphocholines (LPC). This review discusses the role of iPLA(2) in cell growth with special emphasis placed on their role in cell signaling. The putative lipid signals involved are also discussed.
    Biochemical pharmacology 09/2008; 76(9):1059-67. · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Damage and activation of lung endothelium can lead to interstitial edema, infiltration of inflammatory cells into the interstitium and airways, and production of inflammatory metabolites, all of which propagate airway inflammation in a variety of diseases. We have previously determined that stimulation of human microvascular endothelial cells from lung (HMVEC-L) results in activation of a calcium-independent phospholipase A(2) (iPLA(2)), and this leads to arachidonic acid release and production of prostaglandin I(2) (PGI(2)) and platelet-activating factor (PAF). We stimulated lung endothelial cells isolated from iPLA(2)beta-knockout (KO) and wild type (WT) mice with thrombin and tryptase to determine the role of iPLA(2)beta in endothelial cell membrane phospholipid hydrolysis. Thrombin or tryptase stimulation of WT lung endothelial cells resulted in increased arachidonic acid release and production of PGI(2) and PAF. Arachidonic acid release and PGI(2) production by stimulated iPLA(2)beta-KO endothelial cells were significantly reduced compared to WT. Measured PLA(2) activity and PGI(2) production by iPLA(2)beta-KO cells were suppressed by pretreatment with (R)-bromoenol lactone (R-BEL), which is a selective inhibitor of iPLA2gamma. In contrast to the increase in PAF production induced by stimulation of WT endothelial cells, none was observed for KO cells, and this suggests that endothelial PAF production is entirely dependent on iPLA(2)beta activity. Because inflammatory cell recruitment involves the interaction of endothelial cell PAF with PAF receptors on circulating cells, these data suggest that iPLA(2)beta may be a suitable therapeutic target for the treatment of inflammatory lung diseases.
    Biochemistry 07/2010; 49(26):5473-81. · 3.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutagenesis of mice with N-ethyl-N-nitrosourea (ENU) is a phenotype-driven approach to unravel gene function and discover new biological pathways. Phenotype-driven approaches have the advantage of making no assumptions about the function of genes and their products and have been successfully applied to the discovery of novel gene-phenotype relationships in many physiological systems. ENU mutagenesis of mice is used in many large-scale and more focused projects to generate and identify novel mouse models for the study of gene functions and human disease. This review examines the strategies and tools used in ENU mutagenesis screens to efficiently generate and identify functional mutations.
    AJP Gastrointestinal and Liver Physiology 01/2011; 300(1):G1-11. · 3.65 Impact Factor

Full-text (2 Sources)

View
37 Downloads
Available from
May 26, 2014