• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autosomal recessive juvenile parkinsonism (ARJP) is an early onset familial form of Parkinson's disease. Approximately 50% of all ARJP cases are attributed to mutations in the gene park2, coding for the protein parkin. Parkin is a multidomain E3 ubiquitin ligase with six distinct domains including an N-terminal ubiquitin-like (Ubl) domain. In this work we examined the structure, stability, and interactions of the parkin Ubl domain containing most ARJP causative mutations. Using NMR spectroscopy we show that the Ubl domain proteins containing the ARJP substitutions G12R, D18N, K32T, R33Q, P37L, and K48A retained a similar three-dimensional fold as the Ubl domain, while at least one other (V15M) had altered packing. Four substitutions (A31D, R42P, A46P, and V56E) result in poor folding of the domain, while one protein (T55I) showed evidence of heterogeneity and aggregation. Further, of the substitutions that maintained their three-dimensional fold, we found that four of these (V15M, K32T, R33Q, and P37L) lead to impaired function due to decreased ability to interact with the 19S regulatory subunit S5a. Three substitutions (G12R, D18N, and Q34R) with an uncertain role in the disease did not alter the three-dimensional fold or S5a interaction. This work provides the first extensive characterization of the structural effects of causative mutations within the ubiquitin-like domain in ARJP.
    Biochemistry 02/2011; 50(13):2603-10. · 3.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date, molecular genetic analyses have identified over 500 distinct DNA variants in five disease genes associated with familial Parkinson disease; alpha-synuclein (SNCA), parkin (PARK2), PTEN-induced putative kinase 1 (PINK1), DJ-1 (PARK7), and Leucine-rich repeat kinase 2 (LRRK2). These genetic variants include approximately 82% simple mutations and approximately 18% copy number variations. Some mutation subtypes are likely underestimated because only few studies reported extensive mutation analyses of all five genes, by both exonic sequencing and dosage analyses. Here we present an update of all mutations published to date in the literature, systematically organized in a novel mutation database (http://www.molgen.ua.ac.be/PDmutDB). In addition, we address the biological relevance of putative pathogenic mutations. This review emphasizes the need for comprehensive genetic screening of Parkinson patients followed by an insightful study of the functional relevance of observed genetic variants. Moreover, while capturing existing data from the literature it became apparent that several of the five Parkinson genes were also contributing to the genetic etiology of other Lewy Body Diseases and Parkinson-plus syndromes, indicating that mutation screening is recommendable in these patient groups.
    Human Mutation 07/2010; 31(7):763-80. · 5.05 Impact Factor