SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation.

Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
Nature (Impact Factor: 42.35). 04/2008; 452(7185):370-4. DOI: 10.1038/nature06780
Source: PubMed

ABSTRACT The RE1-silencing transcription factor (REST, also known as NRSF) is a master repressor of neuronal gene expression and neuronal programmes in non-neuronal lineages. Recently, REST was identified as a human tumour suppressor in epithelial tissues, suggesting that its regulation may have important physiological and pathological consequences. However, the pathways controlling REST have yet to be elucidated. Here we show that REST is regulated by ubiquitin-mediated proteolysis, and use an RNA interference (RNAi) screen to identify a Skp1-Cul1-F-box protein complex containing the F-box protein beta-TRCP (SCF(beta-TRCP)) as an E3 ubiquitin ligase responsible for REST degradation. beta-TRCP binds and ubiquitinates REST and controls its stability through a conserved phospho-degron. During neural differentiation, REST is degraded in a beta-TRCP-dependent manner. beta-TRCP is required for proper neural differentiation only in the presence of REST, indicating that beta-TRCP facilitates this process through degradation of REST. Conversely, failure to degrade REST attenuates differentiation. Furthermore, we find that beta-TRCP overexpression, which is common in human epithelial cancers, causes oncogenic transformation of human mammary epithelial cells and that this pathogenic function requires REST degradation. Thus, REST is a key target in beta-TRCP-driven transformation and the beta-TRCP-REST axis is a new regulatory pathway controlling neurogenesis.

Download full-text


Available from: Yang Shi, Sep 05, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone H3K4 demethylase LSD1 plays an important role in stem cell biology, especially in the maintenance of the silencing of differentiation genes. However, how the function of LSD1 is regulated and the differentiation genes are derepressed are not understood. Here, we report that elimination of LSD1 promotes embryonic stem cell (ESC) differentiation toward neural lineage. We showed that the destabilization of LSD1 occurs posttranscriptionally via the ubiquitin-proteasome pathway by an E3 ubiquitin ligase, Jade-2. We demonstrated that Jade-2 is a major LSD1 negative regulator during neurogenesis in vitro and in vivo in both mouse developing cerebral cortices and zebra fish embryos. Apparently, Jade-2-mediated degradation of LSD1 acts as an antibraking system and serves as a quick adaptive mechanism for re-establishing epigenetic landscape without more laborious transcriptional regulations. As a potential anticancer strategy, Jade-2-mediated LSD1 degradation could potentially be used in neuroblastoma cells to induce differentiation toward postmitotic neurons.
    Molecular Cell 07/2014; 55(3). DOI:10.1016/j.molcel.2014.06.006 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcriptional repressor Rest (Nrsf) recruits chromatin-modifying complexes to RE1 'silencer elements', which are associated with hundreds of neural genes. However, the requirement for Rest-mediated transcriptional regulation of embryonic development and cell fate is poorly understood. Conflicting views of the role of Rest in controlling cell fate have emerged from recent studies. To address these controversies, we examined the developmental requirement for Rest in zebrafish using zinc-finger nuclease-mediated gene targeting. We discovered that germ layer specification progresses normally in rest mutants despite derepression of target genes during embryogenesis. This analysis provides the first evidence that maternal rest is essential for repression of target genes during blastula stages. Surprisingly, neurogenesis proceeds largely normally in rest mutants, although abnormalities are observed within the nervous system, including defects in oligodendrocyte precursor cell development and a partial loss of facial branchiomotor neuron migration. Mutants progress normally through embryogenesis but many die as larvae (after 12 days). However, some homozygotes reach adulthood and are viable. We utilized an RE1/NRSE transgenic reporter system to dynamically monitor Rest activity. This analysis revealed that Rest is required to repress gene expression in mesodermal derivatives including muscle and notochord, as well as within the nervous system. Finally, we demonstrated that Rest is required for long-term repression of target genes in non-neural tissues in adult zebrafish. Our results point to a broad role for Rest in fine-tuning neural gene expression, rather than as a widespread regulator of neurogenesis or cell fate.
    Development 09/2012; 139(20):3838-48. DOI:10.1242/dev.080994 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deregulation of the mammalian target of rapamycin (mTOR) signaling pathway has been found in a variety of human cancers. However, the exact molecular mechanism how the mTOR signaling pathway is regulated remains largely elusive. Recently, DEPTOR was identified as an endogenous mTOR inhibitor that could suppress mTOR activity in vivo. More importantly, accumulated evidence has implicated that DEPTOR plays a pivotal role in the development and progression of human malignances, which could in part be mediated through its inhibitory role toward mTOR. Furthermore, three independent laboratories including our own have demonstrated that the stability of DEPTOR is controlled by the SCF(β-TrCP) E3 ubiquitin ligase and deregulated DEPTOR destruction might contribute to hyperactivation of mTOR in pathologic conditions including cancer. This review discusses the recent literature regarding the function of DEPTOR involved in cell growth, apoptosis, autophagy, epithelial-mesenchymal transition, and drug resistance, all of which are associated with the pathogenesis of human cancers. Moreover, we also summarize that targeting DEPTOR may be a novel strategy for achieving better anticancer treatments.
    Neoplasia (New York, N.Y.) 05/2012; 14(5):368-75. DOI:10.1593/neo.12542 · 5.40 Impact Factor