Mouse mast cell tryptase mMCP-6 is a critical link between adaptive and innate immunity in the chronic phase of Trichinella spiralis infection.

Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
The Journal of Immunology (Impact Factor: 5.36). 05/2008; 180(7):4885-91. DOI: 10.4049/jimmunol.180.7.4885
Source: PubMed

ABSTRACT Although the innate immune function of mast cells in the acute phase of parasitic and bacterial infections is well established, their participation in chronic immune responses to indolent infection remains incompletely understood. In parasitic infection with Trichinella spiralis, the immune response incorporates both lymphocyte and mast cell-dependent effector functions for pathogen eradication. Among the mechanistic insights still unresolved in the reaction to T. spiralis are the means by which mast cells respond to parasites and the mast cell effector functions that contribute to the immunologic response to this pathogen. We hypothesized that mast cell elaboration of tryptase may comprise an important effector component in this response. Indeed, we find that mice deficient in the tryptase mouse mast cell protease-6 (mMCP-6) display a significant difference in their response to T. spiralis larvae in chronically infected skeletal muscle tissue. Mechanistically, this is associated with a profound inability to recruit eosinophils to larvae in mMCP-6-deficient mice. Analysis of IgE-deficient mice demonstrates an identical defect in eosinophil recruitment. These findings establish that mast cell secretion of the tryptase mMCP-6, a function directed by the activity of the adaptive immune system, contributes to eosinophil recruitment to the site of larval infection, thereby comprising an integral link in the chronic immune response to parasitic infection.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mast cells are known to have a detrimental impact on a variety of pathological conditions. There is therefore an urgent need of developing strategies that limit their harmful effects. The aim of this study was to accomplish this by developing a means of inducing mast cell apoptosis. The strategy was to identify novel compounds that induce mast cell apoptosis by permeabilization of their secretory lysosomes (granules). As a candidate, we assessed mefloquine, an anti-malarial drug that has been proposed to have lysosome-permeabilizing activity. Mefloquine was added to mast cells and administered in vivo, followed by assessment of the extent and mechanisms of mast cell death. Mefloquine was cytotoxic to murine and human mast cells. Mefloquine induced apoptotic cell death of wild-type mast cells whereas cells lacking the granule compounds serglycin proteoglycan or tryptase were shown to undergo necrotic cell death, the latter finding indicating a role of the mast cell granules in mefloquine-induced cell death. In support of this, mefloquine was shown to cause compromised granule integrity and to induce leakage of granule components into the cytosol. Mefloquine-induced cell death was refractory to caspase inhibitors but was completely abrogated by reactive oxygen species inhibition. These findings identify mefloquine as a novel anti-mast cell agent, which induces mast cell death through a granule-mediated pathway. Mefloquine may thus become useful in therapy aiming at limiting harmful effects of mast cells.
    Pharmacology Research & Perspectives. 12/2014; 2(6).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sentinel roles of mammalian mast cells (MCs) in varied infections raised the question of their evolutionary origin. We discovered that the test cells in the sea squirt Ciona intestinalis morphologically and histochemically resembled cutaneous human MCs. Like the latter, C. intestinalis test cells stored histamine and varied heparin•serine protease complexes in their granules. Moreover, they exocytosed these preformed mediators when exposed to compound 48/80. In support of the histamine data, a C. intestinalis-derived cDNA was isolated that resembled that which encodes histidine decarboxylase in human MCs. Like heparin-expressing mammalian MCs, activated test cells produced prostaglandin D2 and contained cDNAs that encode a protein that resembles the synthase needed for its biosynthesis in human MCs. The accumulated morphological, histochemical, biochemical, and molecular biology data suggest that the test cells in C. intestinalis are the counterparts of mammalian MCs that reside in varied connective tissues. The accumulated data point to an ancient origin of MCs that predates the emergence of the chordates >500 million years ago, well before the development of adaptive immunity. The remarkable conservation of MCs throughout evolution is consistent with their importance in innate immunity.
    Biochemical and Biophysical Research Communications 08/2014; · 2.28 Impact Factor
  • Source
    Acta histochemica et cytochemica official journal of the Japan Society of Histochemistry and Cytochemistry 07/2014; · 1.22 Impact Factor


Available from

Similar Publications