Article

Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion.

Laboratory of Protein Dynamics and Signaling, National Cancer Institute, Frederick, MD 21702, USA.
Molecular biology of the cell (Impact Factor: 5.98). 07/2008; 19(6):2457-64. DOI: 10.1091/mbc.E08-02-0227
Source: PubMed

ABSTRACT The mitochondrion is a dynamic membranous network whose morphology is conditioned by the equilibrium between ongoing fusion and fission of mitochondrial membranes. In the budding yeast, Saccharomyces cerevisiae, the transmembrane GTPase Fzo1p controls fusion of mitochondrial outer membranes. Deletion or overexpression of Fzo1p have both been shown to alter the mitochondrial fusion process indicating that maintenance of steady-state levels of Fzo1p are required for efficient mitochondrial fusion. Cellular levels of Fzo1p are regulated through degradation of Fzo1p by the F-box protein Mdm30p. How Mdm30p promotes degradation of Fzo1p is currently unknown. We have now determined that during vegetative growth Mdm30p mediates ubiquitylation of Fzo1p and that degradation of Fzo1p is an ubiquitin-proteasome-dependent process. In vivo, Mdm30p associates through its F-box motif with other core components of Skp1-Cullin-F-box (SCF) ubiquitin ligases. We show that the resulting SCF(Mdm30p) ligase promotes ubiquitylation of Fzo1p at mitochondria and its subsequent degradation by the 26S proteasome. These results provide the first demonstration that a cytosolic ubiquitin ligase targets a critical regulatory molecule at the mitochondrial outer membrane. This study provides a framework for developing an understanding of the function of Mdm30p-mediated Fzo1p degradation in the multistep process of mitochondrial fusion.

0 Bookmarks
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A large number of RING finger (RNF) proteins are present in eukaryotic cells and the majority of them are believed to act as E3 ubiquitin ligases. In humans, 49 RNF proteins are predicted to contain transmembrane domains, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways, as well as to mitochondria and peroxisomes. They are thought to be molecular regulators of the organization and integrity of the functions and dynamic architecture of cellular membrane and membranous organelles. Emerging evidence has suggested that transmembrane RNF proteins control the stability, trafficking and activity of proteins that are involved in many aspects of cellular and physiological processes. This review summarizes the current knowledge of mammalian transmembrane RNF proteins, focusing on their roles and significance.
    Membranes. 12/2011; 1(4):354-93.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number.
    Molecular Systems Biology 06/2014; 10(6). · 14.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are highly dynamic organelles that continuously fuse and divide. To maintain mitochondria, cells establish an equilibrium of fusion and fission events, which are mediated by dynamin-like GTPases. We previously showed that an mus-10 strain, a mutagen-sensitive strain of the filamentous fungus Neurospora crassa, is defective in an F-box protein that is essential for the maintenance of mitochondrial DNA (mtDNA), long life span, and mitochondrial morphology. Similarly, a uvs-5 mutant accumulates deletions within its mtDNA, has a shortened life span, and harbors fragmented mitochondria, the latter of which is indicative of an imbalance between mitochondrial fission and fusion. Since the uvs-5 mutation maps very close to the locus of fzo1, encoding a mitofusin homologue thought to mediate mitochondrial outer membrane fusion, we determined the sequence of the fzo1 gene in the uvs-5 mutant. A single amino acid substitution (Q368R) was found in the GTPase domain of the FZO1 protein. Expression of wild-type FZO1 in the uvs-5 strain rescued the mutant phenotypes, while expression of a mutant FZO1 protein did not. Moreover, when knock-in of the Q368R mutation was performed on a wild-type strain, the resulting mutant displayed phenotypes identical to those of the uvs-5 mutant. Therefore, we concluded that the previously unidentified uvs-5 gene is fzo1. Furthermore, we used immunoprecipitation analysis to show that the FZO1 protein interacts with MUS-10, which suggests that these two proteins may function together to maintain mitochondrial morphology.
    Eukaryotic Cell 02/2013; 12(2). · 3.18 Impact Factor

Full-text (2 Sources)

Download
14 Downloads
Available from
Jun 10, 2014