Article

A neuronal model of Alzheimer's disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury.

Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA.
Neuroscience (Impact Factor: 3.33). 05/2008; 153(1):120-30. DOI: 10.1016/j.neuroscience.2008.01.044
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is associated with beta-amyloid accumulation, oxidative stress and mitochondrial dysfunction. However, the effects of genetic mutation of AD on oxidative status and mitochondrial manganese superoxide dismutase (MnSOD) production during neuronal development are unclear. To investigate the consequences of genetic mutation of AD on oxidative damages and production of MnSOD during neuronal development, we used primary neurons from new born wild-type (WT/WT) and amyloid precursor protein (APP) (NLh/NLh) and presenilin 1 (PS1) (P264L) knock-in mice (APP/PS1) which incorporated humanized mutations in the genome. Increasing levels of oxidative damages, including protein carbonyl, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT), were accompanied by a reduction in mitochondrial membrane potential in both developing and mature APP/PS1 neurons compared with WT/WT neurons suggesting mitochondrial dysfunction under oxidative stress. Interestingly, developing APP/PS1 neurons were significantly more resistant to beta-amyloid 1-42 treatment, whereas mature APP/PS1 neurons were more vulnerable than WT/WT neurons of the same age. Consistent with the protective function of MnSOD, developing APP/PS1 neurons have increased MnSOD protein and activity, indicating an adaptive response to oxidative stress in developing neurons. In contrast, mature APP/PS1 neurons exhibited lower MnSOD levels compared with mature WT/WT neurons indicating that mature APP/PS1 neurons lost the adaptive response. Moreover, mature APP/PS1 neurons had more co-localization of MnSOD with nitrotyrosine indicating a greater inhibition of MnSOD by nitrotyrosine. Overexpression of MnSOD or addition of MnTE-2-PyP(5+) (SOD mimetic) protected against beta-amyloid-induced neuronal death and improved mitochondrial respiratory function. Together, the results demonstrate that compensatory induction of MnSOD in response to an early increase in oxidative stress protects developing neurons against beta-amyloid toxicity. However, continuing development of neurons under oxidative damage conditions may suppress the expression of MnSOD and enhance cell death in mature neurons.

0 Bookmarks
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apurinic/apyrimidinic endonuclease 2 (Apex 2) plays a critical role in DNA repair caused by oxidative damage in a variety of human somatic cells. We speculated that chondrocyte Apex 2 may protect against the catabolic process of articular cartilage in osteoarthritis (OA). Higher levels of Apex 2 expression were histologically observed in severely compared with mildly degenerated OA cartilage from STR/OrtCrlj mice, an experimental model which spontaneously develops OA. The immunopositivity of Apex 2 was significantly correlated with the degree of cartilage degeneration. Moreover, the OA-related catabolic factor interleukin-1β induced the expression of Apex 2 in chondrocytes, while Apex 2 silencing using small interfering RNA reduced chondrocyte activity in vitro. The expression of Apex 2 in chondrocytes therefore appears to be associated with the degeneration of articular cartilage and could be induced by an OA-related catabolic factor to protect against the catabolic process of articular cartilage. Our findings suggest that Apex 2 may have the potential to prevent the catabolic stress-mediated down-regulation of chondrocyte activity in OA.
    International Journal of Molecular Sciences 04/2014; 15(9):14921-14934. · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Emerging evidences suggest that the abnormal mitochondrial fission participates in pathogenesis of cardiac diseases, including myocardial infarction (MI) and heart failure. However, the molecular components regulating mitochondrial network in the heart remain largely unidentified. Here we report that miR-361 and prohibitin 1 (PHB1) constitute an axis that regulates mitochondrial fission and apoptosis. The results show that PHB1 attenuates mitochondrial fission and apoptosis in response to hydrogen peroxide treatment in cardiomyocytes. Cardiac-specific PHB1 transgenic mice show reduced mitochondrial fission and myocardial infarction sizes after myocardial infarction surgery. MiR-361 is responsible for the dysfunction of PHB1 and suppresses the translation of PHB1. Knockdown of miR-361 reduces mitochondrial fission and apoptosis in vivo and in vitro. MiR-361 cardiac-specific transgenic mice represent elevated mitochondrial fission and myocardial infarction sizes upon myocardial ischemia injury. This study identifies a novel signaling pathway composed of miR-361 and PHB1 that regulates mitochondrial fission program and apoptosis. This discovery will shed new light on the therapy of myocardial infarction and heart failure.Cell Death and Differentiation advance online publication, 12 December 2014; doi:10.1038/cdd.2014.200.
    Cell death and differentiation. 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stereochemistry is a very important issue for pharmaceutical industry and can determine drug efficacy. Design and synthesis of small molecules, especially chiral molecules, which selectively target and inhibit amyloid (Aβ) aggregation represent valid therapeutic strategies for treatment of Alzheimer's disease (AD). Herein we report that two triple-helical dinuclear metallo-supramolecular complexes can act as a novel class of chiral amyloid-β inhibitors. Through targeting α/β-discordant stretches at the early steps of aggregation, these metal complexes can enantioselectively inhibit Aβ aggregation, which are demonstrated using fluorescent living cell-based screening and multiple biophysical and biochemical approaches. To the best of our knowledge, this is the first report of enantioselective inhibition of Aβ aggregation. Intriguingly, as a promising candidate for AD treatment, the chiral metal complex can cross the blood-brain barrier (BBB) and have SOD activity. It is well known that chiral discrimination is important for understanding chiral drug action. Generally, one enantiomer is pharmaceutically active while the other is inactive or exerts severe side effects. Chiral discrimination should be important for AD treatment. Our work provides new insights into chiral inhibition of Aβ aggregation and opens a new avenue for design and screening of chiral agents as Aβ inhibitors against AD.
    Journal of the American Chemical Society 07/2014; · 11.44 Impact Factor

Full-text (2 Sources)

Download
39 Downloads
Available from
Jun 5, 2014